Hardware technology

Chapter 1

Introduction
Hardware technology is improving continuously. Processing speed of CPU's have strongly followed Moore's law till now but It can not continue forever. Physical limits of semiconductor based microelectronics and reducing the size of transistors are major design problems. These limitations cause heat build-up and data synchro- nization problem which put a fundamental barrier for Moore's law. Single processor chips have reached their limit and have a very little scope of improvement however demand for more capable and fast systems has caused CPU designers to use vari- ous other methods to increase CPU performance.Most of the applications are well suited to instruction-level parallelism (ILP) or thread-level parallelism(TLP). Keep- ing these applications in mind multiple independent CPUs is one common method to increase a systems overall performance. Hardware technology has started to shift from high clocked single processor chips to less power consuming multicore chips. Most of the systems available in market (even for desktop computers) have mul- ticore chips. If one wants to gain best possible performance from these systems it makes sense to write parallel application. Running sequential applications on these systems is eventually under-utilization of systems. Software technologies must complement advancement in hardware technologies to take advantage of system's underlying architecture to harness its maximum power. Most of the programming languages facilitate support for parallel programming by providing hardware speci

c constructs or libraries. These speci

c construct can capture the power of system's architecture when triggered, they can be integrated into the application program either automatically by compiler or manually by the programmer.

Parallelizing a program automatically with a compiler have its own limitations. First of all the compiler does not have any information about the problem being solved, algorithm being followed or data structures being used by the programmer. Auto parallelization compilers try to 

nd out independent instructions and divide them into parallel tasks. Compilers do dependence analysis to 

nd out whether instructions are safe to parallelize or not. In case of any doubt it does not parallelize them but some times instructions can be parallelized safely. Also, when parallelism is possible at many nested levels compiler lacks information to parallelize at most bene

cial level.

These issues can be taken care of by using programmers knowledge about the program, data structures used in program and dependencies. Programmer can exploit maximum possible parallelism by writing a parallel code in 

rst place. However, parallel programming is complicated and only skilled programmers can exploit high concurrency form a parallel program. Also, there are a lot of parallel programming techniques (e.g. Open-MP, MPI, P-Threads and Win-32 API) each suitable for different kind of applications and architecture of underlying machine.New technologies are also evolving continuously with time. One can not expect non programming expert domain engineers to learn all the technologies. So, there is a need for some technique which can allow them to write parallel programs without learning all technologies.
1.1 Motivation

