The mammalian adult brain
In the mammalian adult brain, the genesis of new neurons continues throughout life within 2-3 layered cortical regions, the hippocampus and olfactory bulb (OB), where it is sustained by endogenous stem cells. The most active NSC compartment is found in sub ventricular zone (SVZ). This area represents a remnant of the embryonic germinal Neuroepithelium, which persists throughout life as an actively mitotic layer in the wall of the telencephalic lateral ventricles and along its rostral extension towards the olfactory bulb. A complete turnover of the resident proliferating cell population occurs every 12 to 28 days in the SVZ about 30,000 new neuronal precursors (neuroblasts) being produced every day and migrating to the OB. Two main cell types are found in the SVZ: migratory, proliferating neuroblasts and astrocytes. They reach the more superficial OB layers and terminally differentiate into granule and periglomerular neurons. Glial tubes are composed of a special type of astroglia that expresses the marker of mature CNS astrocytes (glial fibrillary acidic protein (GFAP) but also contain the cytoskeletal proteins vimentin and nestin. Astroglial tubes and NSCs do not coexist solely within the periventricular aspect of the SVZ but also within the rostral migratory stream that extends into the OB, with the former perhaps contributing to create an appropriate stem cell "niche" for the maintenance of NSCs all along the pathway. Adult neurogenesis is a spatially confined process, constrained within the boundaries of the brain-deep SVZ (inner side of the sub Ventricular zone layer). The organization of the adult SVZ in humans is different from that in other mammalian species. The lateral ventricular wall consists of four layers with various thickness and cell densities: a monolayer of ependymal cells (layer I), a hypocellular gap containing astrocytic processes (layer II), a ribbon of cells composed of astrocytes (layer III), and a transitional zone into the brain parenchyma (layer IV). Astrocytes proliferate in vivo and behave as multipotent progenitors in vitro, but no chain migration was observed in the human SVZ. However, newborn cells that express cell cycle proteins (Ki-67 and proliferating cell nuclear antigen [PCNA]) were detected in the granular and glomerular layers of the human OB, but no clear evidence of the presence of a migratory pathway from the SVZ has been demonstrated. However previous was believed that the neural stem cells must be present at Sub ventricular region.

Neural cells have been isolated earlier from fetal tissue showed by many investigators (Flax et al., 1998, Svendsen et al. 1999, Tamaki et al., 2002. Vescovi et al., 1999, Schwartz et al., 2003, Xiaoxia Li 1 et al., 2005, Cacci et al. 2007, Donato et al. 2007) from whole brain or different regions of brain. In the present study we have isolated neural cells from Sub ventricular zone of the fetal brain which is a main active neurogenesis region in human body. From the brain we isolated neural cells and checked for viability and found that approximately more than 90% cells are in active form. The cells which were stained with Haematoxylin and Eosin showed cells in inverted Phase contrast which can be considered as immature cells. These cells are round in shape with high nucleolus and low cytoplasmic content. In SVZ our observation was that it has three layers, on Hematoxillin and eosin stained histological examination (of 16wk fetal brain), comparable to above literature. In immunofluoresence staining experiment the brain neural cells reacted positively with anti human Sox2, Oct-4 antibodies .Oct-4 and Sox2 are the transcription factors appeared in induced pluripotent stem cells and embryonic stem cells. These are very important transcriptional factors in characterized pluripotent stem cells. In our experiment SVZ of fetal brain tissue was neurogenic in nature (previous literatures), in this tissue different types of neural cells were generated through single type of cell nich in ependymal layer. This unique type of cells may equal to stem cell. Sox2 and Oct-4 positivity reaction indicates that the pluripotent cells probably exist in SVZ of 20 wk fetus brain. However we have done only qualitative experiment but other molecular experiments may be necessary to give evidence to this pluripotent nature of SVZ originated cells.
Immuno phenotyping of isolated neural cells -Flowcytometer (FACS) analysis:
Cell therapy approach is based on the transplantation of appropriate cells, which must not only be well characterized biologically and immunologically safe, but also sufficiently numerous to ensure adequate post-transplantation survival, tissue regeneration, and an acceptable degree of functional recovery and/or symptomatic improvement. For the first time in India we have successfully isolated neural stem cells from the human fetuses of different gestation. The isolation and characterization of neural stem cells from the human fetuses open up a further interesting therapeutic perspective because of immature and less immunogenic nature. The Sub Ventricular Zone is a high regenerative potential area, suggesting human fetus as an ideal source of neural stem cells for neurodegenerative disease. Human fetal brain provide source of neural precursor. The main challenge is the isolation of viable neural cells, further enrichment of neural progenitor using phenotypic biomarkers which can provide maximum enriched population of neural stem cells.

Neural stem cells (NSCs) have been isolated from several regions of the brain from mice, rats, monkey and humans. Investigators like Ayako murayama et al first studied the stage dependent changes in the physical parameter, using forward scatter (FSC) and side scatter (SSC) profile, early stage developing cells profile have FSC high fraction look like stem cells (Murayama et al 2002).These cells possess the characteristics of self-renewal and differentiation along all major neural lineages. Previous studies reported notch -1 (Johansson et al 1999); FSC / SSC profile and SP cells (murayama et al 2002), CD133, CD15, CD 24 A2B5, PSA -NCAM. (Capela et al 2002, Lee et al 2005, Capela et al 2006). Aldehyde dehydogenase activity (Corti et al 2006), Syndecan -1, Notch -1 and integrin -B1 (Nagota M et al 2005), CD 133+/CD34-/CD45-(Uchida et al 2000), CD44, CD81, CD184, CD90 (positive) and CD29.CD14 and CD144 (negative) (Schwartz et al. 2003), CD49d (Raphael Guzman et al 2008) were also investigated. Recently pruszak et al. developed cell sorting methodology using surface markers for immature embryonic stem cell types (such as stage-specific embryonic antigen [SSEA]-3, -4, TRA-1-81, TRA-1-60), neural stem and precursor cells (such as CD133, SSEA-1 [CD15], A2B5, forebrain surface embryonic antigen-1, CD29, CD146, p75 [CD271], and differentiated neurons (such as CD24 or neural cell adhesion molecule [NCAM; CD56] (Pruszak et al 2007). David et al concluded that CD133 and CD15 can be a selectable marker but CD 24 a marker distinguish multipotent stem cells from neural progenitor cells (David et al. 2007). These reports suggest that there are many types of NSCs in developing and adult CNS; these heterogenous surface protein profile expression on neural developmental stages given further few selection of markers as CD34 (Universal marker/Hematopoietic stem cell marker), CD 49f (stem cell marker / Transient amplifying marker), CD105/CD90 (Thy-1) (Mesenchymal Markers), CD56 (NCAM) /CD16/CD3 (Neural cell adhering marker) for identification of immature neural cell or neural lineage progenitor. This immunophenotypic analyses helped in the isolation and identification of neural stem cells in SVZ of fetal brain.

In the present study I have isolated neural cells from aborted fetal brain to check the percentage of different phenotypic markers. The data generated on phenotypic expression of CD90, CD49f, CD105, CD34 showed low expression level in the cells isolated from human fetal brain. The higher expression was observed in CD56, followed by CD105. The expression of CD56 in lower gestation samples was below 50%. CD105 cells nearly 27%, the expression of CD34, CD49f, and CD90 was approximately 3±5% was seen in sub ventricular zone. And also CD90 and CD 105 Biomarkers of mesenchymal stem cells were expressed on isolated neural cells indicating the possibility of mesenchymal lineage in subventricular zone but some more investigations are necessary to confirm the mesenchymal lineage as seen in bone marrow derived progenitor cells.
Isolation of neural stem cells by CD 133 cell surface marker through MACS (Magnetic Activated Cell Sorting):
Human AC133 antigen is a glycoprotein with a molecular mass of 120 kDa. AC133 antigen was first detected on CD34 bright hematopoietic stem cells using a monoclonal antibody (mAb) 1 named clone AC133 that was raised against human CD34 cells. AC133 antigen has since been widely used to facilitate the analysis and isolation of hematopoietic primitive cells. Subsequently, Peichev et al. showed that endothelial progenitor cells co-express AC133 antigen and the endothelial cell-specific receptor kinase-insert domain-containing acceptor (KDR) in subpopulations of CD34 cells derived from fetal liver, bone marrow, cord blood, and peripheral blood(Peichev et al.2000).
               Recently, human central nervous system stem cells were also reported to express AC133 antigen. A characteristic feature of this protein is its rapid down-regulation during cell differentiation, which makes it a unique cell surface marker for the identification and isolation of stem cells. Hence we chose this antigen specific antibody as marker for neural stem cell marker. Previous studies have shown that prominin specifically interacts with membrane cholesterol, suggesting that prominin has a role in membrane organization and membrane-to-membrane interactions. Ying Yu et al suggested that a role of this isoform in fetal development, adult tissue and organ homeostasis and its application as a useful cell surface marker for human stem cells (Ying Yu et al 2002).
               The adult mammalian brain harbors new neurons throughout life in two discrete locations: hippocampus and subventricular zone (SVZ). Immature neurons generated in the SVZ travel along the rostral migratory stream (RMS). The identity of the stem cells in the adult SVZ has been debated extensively. Glial fibrillary acidic protein (GFAP) expressing cells have been suggested to be the stem cells that give rise to transiently fast amplifying neural progenitor population, which eventually generates PSA-NCAM - neuroblasts. However, other makers for SVZ stem cells into the current lineage model have not been clearly determined.
               Ependymal cells, which form a multiciliated single cell layer lining ventricles and are in close proximity to the cells of the SVZ, were also suggested to have stem cell characteristics; however, subsequent studies have challenged the initial report. To date, the contribution of ependymal cells to the lineage of the postnatal SVZ still remains controversial. Our investigation suggested that the neural stem cells are present at Sub ventricular zone; to justify this we have got enriched CD133 immunoreacted positive cells. Previous literature showed that CD 133 (biomarker) positive cells have a nature of stem cells. There was also possibility that the presence of neuroblasts like cells in the subventricular region. We also found the NCAM positive cells at this region and co expressing the cells with CD 133 positive and negative cells with high expression in FACS analysis. Other markers are also expressed at low level. It indicates the high purity of neural stem cells present in Sub ventricular Zone, which can be used directly as cell therapy for neurological disorders.

CD133 (prominin-1), has been detected in a number of stem cells, including myogenic and hematopoietic stem cells. CD133 expression was shown in embryonic stem cell derived neural stem cells in culture, putative neural stem cells of the cerebellum, and embryonic neuroepithelial cells. In addition to the native stem cells, CD133 is present on numerous types of cancer stem cells, including retinoblastoma, leukemias, and brain tumors. Collectively, CD133- immunoreactivity provides an important tool to recognize various stem cell populations.
               Volkan et al identified CD133 expressing cells exclusively in the postnatal ependyma. Subpopulations of ependymal cells that are CD133 possess classical neural stem cell characteristics invitro. Further more, quiescent CD133+ ependymal cells in vivo retain the capacity for cell division and become activated upon injury. Using transplantation and genetic lineage tracing others demonstrated that CD133 ependymal cells generate new neurons that become part of the postnatal SVZ. They may be the progenitor cells which are generated from the ependymal cells and released in to the Sub ventricular zone which is a free floating or migrating zone. Due to this reason we have isolated the tissue cells may be with some contamination of ependymal layer. Because of this the cells may be highly enriched of neural progenitor cells and one of the neural novel stem cell markers CD133 along with conjugated Magnetic bead through MACS was used in further enrichment to get pure form of neural stem cells. We purified neural stem cells and further immunophenotypic analysis was performed so that we can confirm the neural stem cells purity and characterize of the enriched cells. Coskun et al. data indicated that CD133 expressing ependymal cells render a quiescent stem cell population in the mammalian forebrain (Coskun et al. 2008). Keeping these reports in view we have sorted the CD133 positive cells population and negative cells population by Magnetic associated cell sorting (MACS) from SVZ of human fetal brain cells. These data shows that CD 133 sorted maximum cells were neuroblasts like immature type cells and cells expressed at low level by other markers (CD34. CD45 and CD49f) approximately 2%. And other observation was that the cells CD56-/CD133 + was 6.02%, these may be the real neural stem cells. These cells morphology with Haematoxylin and eosin stains showed that these are immature cells with high nucleus and low cytoplasmic ratio which still have not developed any axons or dendrites.
Gene expression analysis of pluripotent genes in the isolated fetal brain cells:
               The cells are used for the gene analysis to indicate the nature of the Subventricular Zone tissue sample, whether they are immature (embryonic) or mature type of neural cells. We used the Pluripotent transcription genes like Sox2, Oct-4 and other stem cell transcription genes Notch-2, Nestin. Sox2 encodes an SRY-related high mobility group box transcription factor and is expressed in at least three types of stem cells, i.e. neural stem cells (NSC), embryonic stem (ES) cells, and trophoblast stem cells. Graham et al. 2003 demonstrated that constitutive ex-pression of Sox2 results in maintenance of the neural stem/progenitor cell state and blocks Neuronal differentiation. Oct4 ex-pression is necessary to maintain ESC identity. Reprogramming of primary human fibroblasts requires only two factors, i.e Oct4 and Sox2, without the need of the oncogenes. The other transcription factors Notch-2, ex-pression indicates the cells with the dividing capacity and also involved in cell cycling pathways. Nestin, neural stem cell marker gene, ex-pression gives the full proof of neural specific stem cell, we analyzed the genomic way to know the stem cell character and neural specificity. We analyzed above genes ex-pression in different fetal gestational age. Sub ventricular zone cells having the evidence of neural stem cells which have characters of pluripotent or embryonic stem cells. The experimental results indicated positivity for four genes ex-pression. This may give evidence of pluripotent nature of cells. However the individual neural cell's nature is still to be analysied.
Culture characteristic of sorted neural CD133 positive cells:
One of the isolation methods for neural stem cells is culturing in vitro by conditioned medium. First reported neural stem cell isolation and expansion from the embryonic and adult mouse striatum in the early 1990's in a culture system referred to as the Neurosphere Assay. Later it was found that not only embryonic (Central Nervous system) CNS but also adult CNS possesses the ability to generate neurospheres forming cells in vitro, including Neural epithelial progenitor (NEP) cells radial glial cells, SVZ cells and ependymal cells, which can clonigenically generate neurons, astrocytes and oligodendrocytes in vivo (Rao 2006). Mahender provided compelling evidence that after exposure to high concentrations of Epidermal growth factor (EGF) mitogen, type C cells of the adult SVZ function as stem cells in vitro (Rao 2006). This clearly indicated that transformed cells do not possess stem cell characteristic in vivo. Ependymal cells, astrocytes, oligodendrocytes precursors and neural progenitor cells can form neurospheres like aggregates that can be passeged for a limited time period. Most studies have shown that the neural stem cells derived from the brain respond to either basic fibroblast growth factor (bFGF) or EGF and Neural stem cells cultured as neurospheres from the early embryonic forebrain do not respond to EGF until they acquire EGF receptors at later stages of development in vitro or in vivo. However, neural stem cells cultures from the adult murine hippocampus forms as monolayer in the presence of bFGF (Palmer et al 1995).

Furthermore, Tarasenko et al studied a combination of bFGF, EGF, and leukemia inhibitory factor (LIF) expanded Human neural stem cells (hNSCs) more efficiently than any other treatment as determined by counting total cell numbers using a trypan blue exclusion assay, and flow cytometric analysis. It was observed that hNSCs well expanded with EGF/bFGF or EGF/bFGF/LIF in vitro (Tarasenko et al 2004). Similarly we also used EGF / bFGF for Neurospheres formation in Plastic cell culture plates.

However different substrates were used to support neural stem cell culture. In recent experiments substrates were used such as fetal bovine serum in substrate-coated plates and soluble form (Hung et al 2006), Lysine-alanine sequential polymer substrates (Jyh - Horng et al 2006), Flasks coated with 1.5% agarose gel (Zheng et al 2007) and Collagen type-1 gel (Watanabe et al 2007).These cell substrates can be used for further cell metabolic studies in vitro. Reports have shown neurospheres were able to grow as free floating or adherent cultures in vitro. We also cultured isolated CD133 positive cells and Negative cells in conditioned medium with growth factors in the plastic uncoated culture plates for neurospheres growth and colony assay. Neurospheres were found similar to Tarasenko et al and others cultures. In our cultures, CD133 positive cell's formed more, Neurospheres compared to CD133 negative cells.
Conclusion:
Pharmacological or neurosurgical therapies currently used to treat neurological damages in various neurodegenerative disorders (i.e. Parkinson's disease, Alzheimer's disease, Huntington's disease, etc) are not efficient in preventing or reverting these progressive neurodegenerative processes. Recently, a new approach to cell therapy has been introduced. This approach is based on the transplantation of appropriate cells, which must not only be well characterized and biologically and immunologically, but also sufficiently numerous to ensure adequate post-transplantation survival, tissue regeneration, and an acceptable degree of functional recovery and/or symptomatic improvement. For the first time in India we have successfully isolated neural stem cells from the human fetuses of different gestation. The isolation and characterization of neural stem cells from the human fetuses open up a further interesting therapeutic perspective. The high regenerative potential of this area suggests that human fetuses are an ideal source of neural stem cells for neurodegenerative disease. Under our investigated conditions, the stem cells obtained from the human fetal brain, like embryonic stem cells or pluripotent cells proliferated in vitro. We also found that few neural cells have anti human Oct -4 and Sox2 positive nature in SVZ region and in FACS analysis CD56-/CD133 + cells were 6.02%, these cells may be the real neural stem cells and can be used for further identification and characterization. These cells are the progenitors of three neural lineages cells and may be capable of differentiating in vivo after transplantation in Human neurological disorders.

Concluding here with the Human fetal brain may provide a source of neural stem cells and Neuroblast cells with high purity in Sub ventricular zone for therapeutic usage in neurological disorders.
· In this study, I have chosen Aborted human fetal brain as potential source to isolate the neural stem cells. Neural cells were isolated by trituration method from Subventricular Zone of fetal brain.

· In my experiments blood groups and sex were not considered.

· Isolated Sub ventricular zone neural cells have quantified as 9.708 billions cells (mean value) from mean weight of the brain 32.876 g.

· In histology, The Sub ventricular zone has three layers in 16 week age fetus.

· Pluripotent stem cell markers like Oct-4 and Sox2 (Anti-Human Oct 4 and Sox2 immunofluorecence antibodies) were positive in the tissue sections and isolated cells of SVZ fetal brain. This study found pluripotent stem cells in SVZ region of Human fetal brain.

· In FACS analysis of the immunophenotypic marker of neuroblast cells CD 56 (NCAM) expressed 56.83 mean value in 16 wks to 22 wks gestation ages. Other stem cells markers expression like CD 34: 2.76, CD 49f: 3.16, CD 90:2.86 and CD 105:27.78. CD 90 and CD 105 expression indicates the mesenchymal lineage progenitor's presence in SVZ area.

· Experiment data of enrichment of neural stem cells by CD 133 cell surface marker through MACS (Magnetic Activated Cell Sorting) has shown that maximum CD 133 sorted cells were neuroblasts like immature type cells and these cells expressed low level of other markers (CD34, CD45 and CD49) approximately 2% and
CD56-/CD133+ cells were 6.02%. These cells may be the real neural stem cells.
· Enriched neural stem cells (MACS method) have given rise to neurospheres in culture conditions. 1x10 6 CD133 positive cells formed to neurospheres with 13.166 mean value and CD133 negative cells with 2.33 mean values.

· Neural stem cells can be propagated by culture method and can be enriched by MACS sorting and culturing techniques.

· Genomic analysis has given evidence of Pluripotent type of neural stem cells in at the fetal Sub ventricular region.

· This experimental data probably fulfills the criteria of the source for the application of isolated neural stem cell for cell therapy in the neurological disorders and other applications for degenerative diseases, Pharmacology and Toxicology.
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