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1.   a)
Show that the following function is continuous at  
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 (8 marks)

        b)  Use the definition to find  
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 for the following function:
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 (9 Marks)
 c)  Find interval/s of continuity for the following function:
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   (Total 25 marks)
2.     a)    Prove that the following function is monotonic decreasing function
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                                                (6 marks)
        b)   Calculate each of the following limits :
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(12 marks)
        c)    Prove that the following function is not differentiable at x = 2
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(7  marks)
      






   (Total 25 Marks)
3.
a)
Starting from the field axioms and order properties for R, prove that:



(i)
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(ii)
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State your assumptions clearly throughout the two proofs.










(6 marks)

b)
Prove directly (by letting ε>0 be given and finding Nε , etc)
that the sequence with terms 
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(9 marks)

c)
Consider the sequence defined recursively by
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(i)

Show that 
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 is a strictly monotonic sequence
 
(e.g. by using induction and evaluating 
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(ii)
Use that fact to prove that 
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4.   a)
Find the sum of the series with terms 
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(8 marks)

b)  Find the sum of the series 
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 c)  Prove that the series 
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  diverges.
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