
Mathematics and Computing/Science/Technology
MST326 Mathematical methods and fluid mechanics

MST326

Assignment Booklet I 2012J

Contents Cut-off date

2 TMA MST326 01
(covering Block 1, i.e. Units 1 to 4 )

20 December 2012

6 TMA MST326 02
(covering Block 2, i.e. Units 5 to 8 )

7 March 2013

Please send all your answers to each tutor-marked assignment (TMA),
together with an appropriately completed assignment form (PT3), to reach
your tutor on or before the appropriate cut-off date shown above.

You will find instructions on how to fill in the PT3 form in the current
Assessment Handbook. Remember to fill in the correct assignment number
as listed above, and allow sufficient time in the post for each assignment to
reach its destination on or before the cut-off date.

The marks allocated to each part of a TMA question are indicated in
brackets in the margin.

Please show your working for all questions. This will give your tutor the
opportunity to award you some marks for a question where your working is
partially correct even though you may not have the correct final answer.

You are advised to keep a copy of your assignments in case of loss in the
mail.

Copyright c© 2012 The Open University WEB 02912 3

3.1



TMA MST326 01 Cut-off date 20 December 2012

This assignment covers Block 1 (Units 1 to 4 ). Each question is allotted
25 marks.

Question 1 (Unit 1 )

(a) An inverted cylindrical container, closed at the top and open at the
bottom, has height H and cross-sectional area A. Initially, the
cylinder contains air at atmospheric pressure, p0 (see the left-hand
part of the vertical cross-sectional diagram below).

The container is now lowered slowly into a large tank of water, until
an equilibrium position is reached at which it floats without further
motion. (This will be a stable configuration provided that the ratio√

A : H is sufficiently large.) The water level within the container is
now a distance h below the top of the container and at a depth d
below the water level outside the container (see the right-hand part of
the diagram below). The thickness of the container is negligible. The
water has constant density ρ, and the magnitude of the acceleration
due to gravity is g.

Hp0p0

p0

pa
h

d

(i) Write down an expression for the water pressure at a depth d
below the water level outside the container. [1]

(ii) By applying Boyle’s Law, express the air pressure pa within the
partly submerged container in terms of p0, h and H . [3]

(iii) By considering the continuity of pressure across the air–water
interface within the container, deduce that

h =
H

1 + αd
, where α =

ρg

p0
. [2]

(iv) By considering all of the external vertical forces acting on the
container and the air within it, express the mass M of the
container in terms of ρ, d and A. Explain how your answer is
equivalent to a statement of Archimedes’ Principle. [4]

(v) Show that the container will float (as described, with the top of
the container above the outside water level) provided that

M < 1
2ρAα−1

(
−1 +

√
1 + 4αH

)
. [4]

(vi) Hence estimate the maximum possible mass of a floating
container with height 2 m and cross-sectional area 50 m2, taking
p0 = 105 Pa, ρ = 103 kg m−3 and g = 10m s−2. [1]

Comment related to part (a): This type of calculation could be used
to estimate the maximum load to be carried by a hovercraft, to ensure
that it floats when its engines are switched off.
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(b) The Earth’s atmosphere is composed of several layers. The
mesosphere, which is regarded as extending from 51 km to 85 km
above the Earth’s surface, is characterised by a steadily decreasing
temperature as height increases. Accepted values for the air
temperature are 271K at the base of the mesosphere and 187K at the
top, and the pressure at the base is taken to be 67 Pa.

A model of the mesosphere assumes that:
• the air is static;
• the perfect gas law applies, with gas constant R = 287 in SI units;
• the magnitude g of the acceleration due to the gravity is constant,

with g = 9.81m s−2;
• if z (in metres) is the height above the surface of the Earth, then

the temperature distribution Θ(z) (in K) is a linear function
between the two temperature values given above, within the
height range 5.1 × 104 ≤ z ≤ 8.5 × 104.

(i) Find the appropriate linear function Θ(z) = a − bz, where a and b
are positive constants to be evaluated. (Here and below, give
inexact numerical values to four significant figures, while using
full calculator accuracy to perform all calculations.) [3]

(ii) Find the corresponding pressure distribution p(z) within the
mesosphere. (It is easiest to assign values to the various
parameters only at the final stage of the argument.) [5]

(iii) Hence show that, according to this model, the atmospheric
pressure at the top of the mesosphere is less than 1% of its value
at the base. [2]

Comment related to part (b): The mesosphere lies above the
troposphere (up to roughly 20 km, where the temperature decreases
with height) and the stratosphere (from 20 km up to roughly 50 km,
where the temperature increases with height). The top of the
mesosphere is the coldest region of the entire atmosphere of the Earth.
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Question 2 (Unit 2 )

(a) (i) Find the general solution of the Cauchy–Euler equation

x2 d2y

dx2
+ 3x

dy

dx
− 3y = 0 (x > 0). [3]

(ii) Show that the Wronskian of two independent solutions of this
Cauchy–Euler equation is a multiple of 1/x3. [1]

(iii) Use the method of variation of parameters to find the general
solution of the differential equation

x2 d2y

dx2
+ 3x

dy

dx
− 3y = 8x (x > 0). [5]

(b) The eigenvalue problem

x2 u′′(x) − 3xu′(x) + (4 + λ)u(x) = 0, u(1) = 0, u(e2) = 0,

has only positive eigenvalues λ, and the general solution of the
differential equation for λ = ω2 (with ω > 0) is

u(x) = x2[A cos(ω lnx) + B sin(ω lnx)],

where A and B are arbitrary constants. (You are not asked to show
this.)

Find all the eigenvalues and eigenfunctions of the problem. [5]

(c) This part concerns the differential equation

(1 − x2)y′′ + xy′ + 3y = 0 (−1 < x < 1).

(i) Show that if y =
∑∞

j=0 ajx
j is the general solution in power series

form, then

aj+2 =
j − 3
j + 2

aj (j = 0, 1, 2, . . .). [4]

(ii) By choosing a0 = 0 and a1 = 1, deduce that the differential
equation has a polynomial solution, y1(x). [2]

(iii) Use the method of reduction of order, together with the solution
y1(x) found in part (c)(ii), to find the general solution of the
differential equation.

Hint : You may use without proof the result that∫ √
1 − x2

x2(1 − 2
3x2)2

dx = −(1 − x2)3/2

x(1 − 2
3x2)

+ c,

where c is an arbitrary constant. [5]

Question 3 (Unit 3 )

Note that the answers to each of parts (b) and (c) of this question can be
checked by substituting the solution found into the given equations. (No
marks will be awarded for doing this in part (a).)

(a) Show that the partial differential equation

∂u

∂x
+

1
3x

u = 20
3 x2 (x > 0),

for u(x, y), has the general solution

u(x, y) = 2x3 + x−1/3f(y),

where f is an arbitrary function. [5]
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(b) (i) Use the method of characteristics, together with your answer to
part (a), to find the general solution for u(x, y) of the partial
differential equation

3x
∂u

∂x
+ 6xy

∂u

∂y
+ u = 20x3 (x > 0, y > 0). [12]

(ii) Find also the particular solution of this equation that satisfies the
condition

u = y + 2 on x = 1. [3]

(c) Using your answer to part (a), find the general solution for u(x, y) of
each of the following partial differential equations.

(i)
∂2u

∂x2
+

1
3x

∂u

∂x
= 20

3 x2 (x > 0, y > 0) [2]

(ii)
∂2u

∂x∂y
+

1
3x

∂u

∂y
= 20

3 x2 (x > 0, y > 0) [2]

(iii)
∂2u

∂x∂y
+

1
3y

∂u

∂x
= 20

3 y2 (x > 0, y > 0) [1]

Question 4 (Unit 4 )

(a) (i) By evaluating curlF, show that the vector field given in
cylindrical polar coordinates by

F(r, θ, z) = 3r2 sin θ cos(2θ) er + r2 cos θ (3 cos(2θ) − 2) eθ + 2z ez

is irrotational. [3]

(ii) Determine a scalar potential φ(r, θ, z) for this vector field F. [6]

(iii) Evaluate the line integral
∫

AB
F . dr, where AB is the line

segment from the point A (0, 3, 0) to the point B (−1, 0, 2), given
in Cartesian coordinates. [3]

(b) For the vector field u given in Cartesian coordinates by

u = x2y i− 3x j,

find (u . ∇)u.

Hint : See the margin of page 198 in Unit 4 for the definition of a . ∇. [2]

(c) Verify Gauss’ Theorem,∫
B

divF dV =
∮

S

F . n dA,

for the vector field

F(r, θ, φ) = r2(cos θ er − 3 sin θ eθ + 2 eφ)

(in spherical polar coordinates), where the region B is the closed
hemisphere given by

0 ≤ r ≤ 1, 1
2π ≤ θ ≤ π, −π < φ ≤ π,

and S is the surface that encloses B.

Hints: On the flat (top) portion of S, the variables r, φ act as plane
polar coordinates, with area element δA = r δr δφ. Note also that the
outward unit normal vector here points upwards. [11]
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TMA MST326 02 Cut-off date 7 March 2013

This assignment covers Block 2 (Units 5 to 8 ). Each question is allotted
25 marks.

Question 1 (Unit 5 )

Consider the two-dimensional vector field

u = 6y(9yt − x) i + 3y2 j.

(a) Show that u could represent the velocity vector field of an
incompressible fluid flow. [2]

(b) (i) By solving appropriate differential equations, show that the
pathlines of this flow for y &= 0 are described by the equations

x = B(3t + A)2 − 3 +
2A

3t + A
, y = − 1

3t + A
,

where A and B are arbitrary constants.

Hint : Note that
3t

(3t + A)4
=

1
(3t + A)3

− A

(3t + A)4
. [6]

(ii) For the pathline that passes through the point (3, 1) at time
t = 0, eliminate t between the equations given in part (b)(i) to
obtain an explicit equation of the form x = x(y) for the pathline. [3]

(c) (i) Write down the equations describing the stream function for the
velocity vector field u. Hence find the stream function for this
flow, and the equations of the streamlines. [7]

(ii) Find in particular the equation of the streamline at time t = 0
that passes through the point (3, 1), in the form x = x(y). [2]

(iii) Sketch on a single diagram the pathline whose equation was
found in part (b)(ii) and the streamline whose equation was found
in part (c)(ii). Indicate in each case the asymptotic behaviour of
the curve and the direction of flow along it. [5]
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Question 2 (Unit 6 )

Water flows steadily along a horizontal open channel of uniform width,
over a broad-crested weir that rises to a height d metres above the
upstream and downstream level of the channel floor, as shown in the figure
below. Upstream from the weir (to the left), the water depth is
h1 = 2 metres and the speed is u1 = 3 ms−1. Take the magnitude of the
acceleration due to gravity as g = 10 m s−2.

h1 = 2m

h2

u1 = 3m s−1

u2
d

(a) Calculate the Froude number for the flow upstream, and hence show
that the flow there is subcritical. [3]

(b) Find the volume flow rate per unit width, Q (in m2 s−1), and the
specific energy E (in m) for the flow upstream. [3]

(c) Show that the depth h2 in the downstream section of the channel
satisfies the equation

20h3
2 − 49h2

2 + 36 = 0.

Supposing that the flow downstream from the weir is supercritical (as
illustrated above), find the depth h2 and speed u2 of the flow
downstream. [6]

In parts (d) and (e), give numerical answers to two decimal places.

(d) Find the critical depth, hc, for the specific energy function that
corresponds to the volume flow rate per unit width Q found in
part (b). State the minimum possible value, Emin, for the specific
energy. [4]

(e) Hence, by applying Bernoulli’s equation along a suitable streamline,
determine the height d metres of the weir that ensures supercritical
flow downstream. [4]

(f) Suppose now that the height of the weir is reduced to 0.1 m. In steady
flow, with the same values of h1 and u1 as before, the flow will be
subcritical downstream, as illustrated in Figure 3.18 on page 97 of
Unit 6.

Find the height by which the water surface dips when above the crest
of the weir, as compared to the water surface level upstream and
downstream. Give your answer to three decimal places. [5]

Question 3 (Unit 7 )

A flow is represented, in cylindrical polar coordinates (r, θ, z), by the
stream function

ψ = 5
3U

(
r − a2

r

)
cos

(
3
5θ

)
,

where U is a positive constant.
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(a) Find the velocity components of the flow, ur and uθ. [2]

(b) Show that this stream function could model a two-dimensional flow of
an inviscid, incompressible fluid in the region to the right of a
boundary (shown in cross-section below) consisting of:
• five sixths of a cylinder of radius a, whose axis lies along the

z-axis;
• flat surfaces perpendicular to the (r, θ)-plane, along θ = ±5

6π,
extending indefinitely outwards from the cylindrical surface. [3]

θ = 0

θ = 5
6π

θ = − 5
6π

r = a

O

(c) By considering the values of ur and uθ for large r at θ = ±5
6π, and

their values for any r > a at θ = 0, or otherwise, sketch a few typical
streamlines of the flow, and indicate the direction of flow along them. [4]

(d) Assume that the body force is zero on the boundary, in which case it
can be shown (you are not asked to do so) that Bernoulli’s equation in
the form p/ρ + 1

2u2 = constant is valid along the streamlines formed
by the boundary. Use this fact to show that the net surface force per
unit length on the five-sixths cylinder, due to the flow, is

a
(

100
11 ρU2 − p0

)
i,

where ρ is the density of the fluid and p0 is the stagnation pressure.

Hint : You may use without proof the result that∫
cos2

(
3
5θ

)
cos θ dθ = 5

4 sin
(

1
5θ

)
+ 1

2 sin θ + 5
44 sin

(
11
5 θ

)
. [9]

(e) Show that the vorticity of the flow is

16U

15r

(
a2

r2
− 1

)
cos

(
3
5θ

)
ez. [2]

(f) The plane surface S is the region 0 ≤ θ ≤ 5
9π, a ≤ r ≤ 4a (a sector of

an annulus), and the closed curve C is the boundary of S. Using the
result of part (e), or otherwise, show that the circulation of the
velocity field u around C (traversed anticlockwise) is −2

√
3 aU . [3]

(g) Consider the particles making up the curve C (as in part (f)) at time
t = 0. At a later time t, these same particles make up the curve C(t),
and it is found that∮

C(t)

u . dr &= −2
√

3 aU.

What can be deduced from this result? [2]
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Question 4 (Unit 8 )

Consider the steady, laminar flow of two liquids, A and B, between infinite
parallel plates at z = ±a, as shown in the diagram below. The plate at
z = −a is fixed, while the plate at z = a moves with constant
velocity −V i, where V > 0. The liquids do not mix, and each forms a
layer of depth a. There is an applied pressure gradient acting on both
liquids, given by ∇p = −C i (where C > 0 is constant), and the effects of
gravitation are negligible.

O

a

−a

x

z

liquid A
µA = µ

liquid B
µB = 2µ

moving plate

fixed plate

interface

−V i pressure
gradient

∇p = −C i

pressure
gradient

∇p = −C i

(a) Assuming that each fluid is of constant viscosity and is Newtonian,
what other assumption must be made about the fluids in order to
apply Equations (2.8) on page 179 of Unit 8? Given the problem
statement, why is this additional assumption reasonable? [2]

(b) The following assumptions are to be made. Write down the
mathematical consequences of each of them.

1. The flow is two-dimensional.
2. There is no variation in the direction into the page.
3. The flow is steady.
4. There is no variation of velocity parallel to the plates.

Hence write down the continuity equation for either of the two liquids. [3]

(c) Show that the fluid velocities uA in liquid A and uB in liquid B are
given by

uA = uA(z) i and uB = uB(z) i.

State the boundary conditions (four in all) at the upper and lower
plates and at the interface z = 0. (Note that the shear stress must
vary continuously between the plates.) [6]

(d) Write down the x-components of the Navier–Stokes equations for uA

and uB. Solve them, using the boundary conditions from part (c), to
show that

uA(z) = − C

6µ

(
3z2 + (4γ − 1) az + 2(γ − 1) a2

)
,

uB(z) = − C

12µ

(
3z2 + (4γ − 1) az + 4(γ − 1) a2

)
, where γ =

µV

Ca2
. [12]

(e) For the case γ = 1
2 , sketch the velocity profile of the flow, indicating

the fluid velocity at the interface in terms of C, a and µ. [2]
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