
Calculus III, 2011: Coursework 3
Will Sutherland

The deadline is 4PM on Thursday Oct 20th. Hand in Question 4 only to the green box
on the basement floor of the Maths building.

1. Sketch the curves whose parametric equations are

(a) r = (2 cos 2t)i + (3 sin 2t)j

(b) r = 2ti− tj + t2k

(c) r = (cos t)i + (sin t)j + tk

(−∞ ≤ t ≤ ∞), and write down the derivatives dr/dt and d2r/dt2 where they are defined.

Answers: (a) is an ellipse in the xy plane, semi-axes 2 and 3 units. (Note the 2 in sin 2t
doesn’t change the actual curve, it just makes the point r loop round the ellipse each
time t increases by π, rather than 2π. If the coefficients of t were different in i and j this
would not be true).

Derivatives are dr/dt = (−4 sin 2t)i + (6 cos 2t)j, and d2r/dt2 = (−8 sin 2t)i− (12 sin 2t)j.

(b) is a parabola, with the symmetry axis along k and in the plane containing 2i− j.
The derivatives are dr/dt = (2,−1, 2t) and d2r/dt2 = (0, 0, 2).

(c) is a helix with radius 1, and symmetry axis the z axis. The derivatives are dr/dt =
(− sin t, cos t, 1) and d2r/dt2 = (− cos t,− sin t, 0).

2. A cardioid is defined by the polar equation r = a(1+cos θ). Sketch the curve, and evaluate
(a) the arc-length , and (b) the enclosed area, over one complete loop of the cardioid.

Answer: The curve is an “apple shape” with one cusp at θ = π. The arc-length is
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where we have used the half-angle formula (similar to the double-angle formula). Now we
need to take the positive root, so the integrand is actually 2| cos θ

2
|; (beware: if you don’t



do that you will get zero !). This is simplified by symmetry if we just take the integral
from 0 to π (where cos θ
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(b) The area enclosed is
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3. An ellipse is constructed via the “two pins and loop of string” method: defining one focus
at the origin, and the second focus at (x = −2c, y = 0), the ellipse C is defined as the
locus of all points P such that r1 + r2 = 2a, where r1, r2 are the distances of P from the
two foci (and a > c). Show that the polar equation of C is

r1(θ) =
a(1− e2)

1 + e cos θ
,

where e = c/a. (Hint: use the cosine rule for a suitable triangle). Show that the ellipse

has semi-major axis a and semi-minor axis b = a
√

(1− e2).

Answer: Let the foci be labelled F1, F2; Consider a general point P on the ellipse at
(r1, θ). The cosine rule applied to triangle F2, F1, P gives

r2
2 = (2c)2 + r2

1 − 2r1(2c) cos(π − θ)

since F2 is on the negative x-axis, so the included angle F2 F1 P is π − θ. Substituting in
r2 = 2a− r1 from the sum-of-distances given, we have

4a2 − 4ar1 + r2
1 = 4c2 + r2

1 + 4cr1 cos θ .

Now the r2
1 cancels, and we rearrange to

r1(a + c cos θ) = a2 − c2 ;



and from definitions, e = c/a, so insert c = ea and then

r1 =
a(1− e2)

1 + e cos θ
. QED

Here the top is a constant (often called `), so the min and max values of r1 clearly
occur at max/min values of the bottom, i.e. θ = 0, π; so the ellipse crosses the x-axis at
x1 = a(1− e2)/(1 + e) and x2 = −a(1− e2)/(1− e). Then x1 − x2 = 2a is the major axis
length, and a is the semi-major axis.

For the semi-minor axis, we want the max/min values of y on the ellipse. We have
y = r1 sin θ from the usual conversion from polar to Cartesian coords. This y is max/min
when dy/dθ = 0; solving for that, we find cos θ = −e and so sin θ = ±

√
1− e2; hence the

semi-minor axis is b = a
√

1− e2.

4. (*) Hand-in question:
A cycloid is defined by the parametric equations x = a(t− sin t), y = a(1− cos t).

(a) Sketch the curve for 0 < t < 4π. [3]

(b) Evaluate the arc-length of the curve for one arch with endpoints at (0, 0) and (2πa, 0).
[4]

(c) Evaluate the area between the one arch in (b) and the x-axis, using A =
∫

y(t)(dx/dt)dt
. [3]

Answer: First note that y is bounded by 0 < y < 2a, and y = 0 when cos t = +1 i.e.
t = 0, 2π, 4π, . . .. At these points, we get x = 0, 2πa, 4πa, . . .. The maximum y is y = 2a
at t = π, 3π, . . .; so over all t the curve has an infinite series of identical ‘arches’. Over
the given range 0 < t < 4π we get two arches.

(b) For the arc-length, we use the formula for length of a parametric curve, and we get
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Note that for the limits on t, we have to solve for the t values at the given (x, y) endpoints.
From part (a), these are clearly seen to be t = 0 and t = 2π.



(c) For the area, from the given formula we have
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(Note that both of these answers look quite similar to Q2; the reason is that a cardioid
can also be generated by a smaller circle rolling inside a larger circle of twice the radius).

5. Evaluate the arc-length of the parabola y = x2 between x = 0 and x = a. (Hint: look up
the integral in a table, e.g. Thomas T-1 number 21, or use a “sinh” substitution).

Answer: The integral we need is
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This looks a bit tricky; but using a substitution x = 1
2
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where b = sinh−1(2a) is the upper limit on u; finally we insert values b = ln(2a+
√

4a2 + 1),

sinh b = 2a, cosh b =
√

1 + (2a)2, and finally we get
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As a check, this tends to a for a � 1 and a2 for a � 1, as expected from a sketch.



6. Find the relation of dv/dt to dv/dt for any non-zero vector v(t). Hence show that

dv/dt = 0 ⇒ dv/dt ⊥ v .

[Note: The last sentence is true, for example, for motion in a circle.]

Answer: Since v2 = v · v, differentiating both sides with respect to t we have

2v
dv

dt
= 2v · dv

dt
.

Dividing by 2v, we get
dv

dt
= v̂ · dv

dt
,

where v̂ is the unit vector. From the usual dot-product rule, this evaluates to |dv/dt| cos θ,
where θ is the angle between dv/dt and v.

If the LHS is zero we must have
dv

dt
· v = 0

which implies the required result (two vectors are perpendicular if their dot product is
zero).

Note: here and in many places in this course, it is very important to keep clear both in
your notation, and in your mind, when you have a scalar and when you have a vector.
Be careful not to lose the dot in a dot product or a divergence, or the cross in a cross
product or a curl. It is probably sensible to avoid using dot or cross for multiplication by
a scalar, to avoid possible confusions.


