Part1

Introduction

Credit risk refers to the probability that the counterparty may not meet its contractual
obligations. Bond rating is a good indicator of credit risk of a sovereign issuing the
bonds. Thus it is important to analyse the possible future rating movements of a
sovereign due to credit events.

1. Probability of Default Rating

To model the credit risks of bonds over time, a continuous time Markov model is
implemented to calculate the probability of credit migration. In using a continuous time
Markov model, the Kolmogorov forward equations are used:
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where Pj;(t) is the transition probability from rating 1 to rating j at time t, and r; refers to
the transition rates from rating k to rating j based on the annual transition rates matrix

estimated. The above equation can be rewritten in matrix formag P(t) = P(t)R , where P(t)
t

is the matrix of transition probabilities over time t, and R is the annual transition rate
matrix estimated.

A possible solution to the above equation is P(¢) = P(0)e" , where P(0) is the
matrix of initial transition probabilities. It is assumed that the sovereign will remain in
their current rating initially (at t=0), so for all ratings the probability of transition from

one rating to another will be zero at time 0, while probability of remaining in the same
rating is 1 (implying that P(0) is the identity matrix).

To observe the probability of default over time for sovereign rated AAA, AA, A and B,
the probability transition matrix will be calculated for 100 equally spaced time frames
over a 10 year period (starting from beginning of year 1995 to end of year 2004 ), The
probability transition matrix can be calculated using approximation techniques, however,
MATLARB is able to calculate the matrix more precisely by taking exponential of
matrices, and extract the appropriate probabilities of default ratings from sovereign

rated AAA, AA, A and B over time. MATLAB was used to perform this procedure and
plot the results in the below graphs. The code can be located in the Appendix 1.1
attached.
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The green, black, blue and red lines indicate the probability for default rating for a
sovereign rated BBB, A, AA, AAA respectively at the beginning of 1995. It can be
noted that the probability for default rating for sovereigns rated BBB, which is around
3.4%107 after 10 years, exceeds the probability of default ratings for sovereigns of other
ratings by a significant amount over the 10 years. Thus it is very difficult to determine
the probability of default ratings for sovereigns of other ratings from the above graph.
Thus another graph for sovereigns rated A, AA, AAA and their probability of default
rating over time is plotted below.
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It is noted that the probability of default rating for A rated sovereigns (represented by

the black line), which is at approximately 4¥10™ after 10 years, is significantly greater

than that of AA and AAA rated sovereigns over time. Another plot is made based on

probability of default rating over time on just sovereigns with AA and AAA ratings.
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The above plot shows the probability of default rating over time for AAA (red line) and
AA (blue line) rated sovereigns. The AA rated sovereigns have a significantly higher
probability of default than AAA rated sovereigns, being at around 2.7%107 at t=10. This
value is still very small meaning that sovereigns rated AA are not likely to enter default
ratings, indicating they are a relatively safe investment.



x 10—7 Probability of default for A8A

N
m

=y
[4a]

Probability of default rating
%]

=

=
(5]

0 | | i i i i i i I
0 1 2 3 4 5 6 7 8 9 10
Time (years from 1995)

The above plot shows the probability of default rating over time for AAA rated
sovereigns, being at around 3.6*10”, which is the lowest probability out of all the
ratings. This means that AAA rated bonds are the safest investment, as it is not likely to
enter default rating.

It can be observed that over time, the probability of entering a default rating from any
other rating will increase, which is intuitive as larger time periods presents greater
opportunities for ratings movement. It is also interesting to note that one level higher in
credit rating corresponds to the probability of default rating reducing by a factor of 10,
except in the case of an AAA rated sovereign; whose probability of default rating is
around 100 times less than that of an AA rated sovereign.

2. Long run proportion of time in each rating
To determine the long run proportion of time within each rating, we note that the net
transition rate into one category is equal to the net transition rate out of the same
category. This can be translated into the following equations:

qu P, =v,P, and ZPk =1

k#j k
where g, are the transition rates from rating k to rating j, v, is the transition rate out of

rating j, while 7, is the long run proportion of time in rating k. The values of g, and v,

for every rating can be found in the estimated transition rate matrix. The second
equation is from noting that the proportion of time in each rating should add up to 1.
These equations can be solved simultaneous using matrix operations, and MATLAB is
once again used to obtain the results. The command lines and code used to run this
procedure can be found in Appendix 1.2.

The long run proportion of time in each rating is shown in the below table:

Credit Rating Category Long run proportion of time in category
AAA 0.764227
AA 0.082885
A 0.08982
BBB 0.02975
BB 0.016274




B 0.014525
CCC 0.001337
CC 0.00016
SD 0.001022

These proportions can be verified by calculating the probability transition matrix P(t)
for large values of't. It should be noted that in the long run, sovereigns will most likely
spend a significant proportion of their time in AAA rating (at around 76% of time). This
is because the transition rate from AAA rating to other ratings is much lower than for
other ratings.

3. Non constant transition rates

Now consider the scenario where the transition rates start increasing by 10% after 1999.
This can be represented by multiplying the transition rate matrix R by 1.1 for every year
it increases. We are asked to calculate the probabilities of a sovereign from each
category being rated as default in 3, 5 and 10 years as at the beginning of 1995.

Since the transition matrix will only increase after 1999, 5 years from 1995, the 3 year
and 5 year probabilities can be calculated same as before, by calculating P(t) based on
P(t) = P(0)e® . MATLAB is used to find the exponential of the matrix R and the

appropriate probabilities are extracted from the matrices P(3) and P(5).

For the 10 year probabilities, the solution of P(t) will change every year after 5 years
due to changes in transition rates matrix. For example, the 6" year (1999-2000), the
solution is now P(t) = P(0)e"'* , where t is time after 1999 and before 2000. The
Chapman Kolmogorov equations, which are P(¢ + s) = P(¢) P(s) are utilised to account
for this problem, by calculating P(5) based on the unchanged transition matrix for years
between 1995 and 1999, while calculating P(1) for each year where the transition rates
matrix R increases for the 5 years after 1999, so that P(10) is just the product of all these
matrices. Once again, MATLAB is used to calculate the exponential of matrices.

The table below shows the probabilities of a sovereign from each category being rated
as default (SD) in 3, 5 and 10 years as at the beginning of 1995. The code and further
results can be found in the Appendix 1.3.

Rating category 3 year 5 year 10 year

AAA 1.30646*107 1.57133*10° 7.24003*10
AA 3.67033 %107 2.55266*10°° 4.45156*107
A 1.86696*107 7.64309%107 0.000550073
BBB 0.000606301 0.001414843 0.003918558
BB 0.005423701 0.01031406 0.017362387
B 0.043172502 0.044470824 0.033025532
CCC 0.135146263 0.070074018 0.036286159

CC 0.104080835 0.058100982 0.0354021

SD 0.0879429 0.055147539 0.03489511

It can be observed that the probability of a sovereign initially rated BB or above being
rated default increases over time, due to greater time frame for credit events and hence
rating migration to occur. Also the increase in transition rate matrix means that there
will be more transitions between credit ratings, meaning sovereigns starting from a
rating close to default are more likely to move upwards than usual.
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Part 11

1. a) Consider the stock price modelled by the geometric Brownian motion process:

& ()=0.10S®)d +0.D S,

For each of the 2 methods suggested, we simulated S(t) for t=150000 with increments of
1/12 for time and then calculated In(S(t))/t for each value of't.

Result from Method 1

It can be noted from the above results, both methods will cause the function In(S(t))/t
will converge to the limit which is approximately 0.0558077, which is close to the true
value of p of 0.055. The true value can be found based on the property of the probability
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distribution of In(S(t)).

We note that: I S(t) ~ N S(0)+1v ,6°t) = N(0.05 £,0.0 ¢) as S©0)=1, u=0.1,

c=03and v=pu—=0.1-
Using the Delta Method, we can deduce the distribution of In(S(t))/t as:
)=N(0.0® ,g)
Taking limits as t goes towards infinity, we note that:
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So as t goes to infinity, the variance will reduce to 0, meaning In(S(t))/t will approach
the mean which is 0.055. Thus the true value of p is 0.055 and verified the results of the

simulation.

b) To find the value of t to obtain 2 digit accuracy with 95% probability, we find t such

that:
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This is equivalent to finding:
P(-0.04p p< m—p <0.06 p)=0.9
Rearranging gives
i S@) »
-0.0p0 p _ < 0.6 p
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P(
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Noting that from part a) that ~ N( p,T) , where p=v, we can deduce that
i SN
;P L 0.05 p
————— ~ N(0,1). This implies that =1.% , and noting that o = 0.3 and

p o
/\5 / Vi
p=v=0.00 ,we deduce that ¢ = 47182

So t must be around 4571822 to obtain two -digit accuracy of the true value of p with
approximately 95% probability.

¢) Based on the values of S(t) simulated from both methods, the value of
0 St)-0.05 1)

t
Appendix 2.1.3.

can also be simulated using both methods. The code can be found in
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It can be observed from the above graphs that the function b SO-p) does not
t

converge to a limit. The function will continually fluctuate randomly, following a
distribution similar to Gamma random distribution.



The behaviour can be verified by analysing the properties of probability distribution of
_ 2
b SO-p) , which we obtain from part (a) as:
t
Ih S#)~NO.® ¢0.0 1)

IhS()—-0.0B ¢
This implies that © \/; ~ N(0,0.® ) . It can then be shown that

t S -0.06 ¢)°
t
with parameters 0.5 and 0.18. The full derivation can be found in the Appendix 2.1.2.

NGl S(t)t—p )’

~T1(0.5,0.18') where I'(0.5,0.18 ) denotes the Gamma distribution

Clearly the behaviour o is independent of t, and thus the function does

not approach a limit as t tends to infinity.

2. Weekly exchange rate analysis — US Dollar and pound sterling (1980 -1988)
Before constructing a stochastic model to fit the data, the data is plotted as a times series,
and the sample autocorrelation function (ACF) and sample partial autocorrelation
function (PACF) are plotted to see if there is any observable trend or seasonality.
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It can be noted that from the above plot of the time series of weekly exchange rates,
there does not seem to be any significant trend or seasonality. From the sample ACF



plot, the correlations decrease rather slowly and steadily from 1, indicating the exchange
rates are not stationary. Thus differencing the data may be advisable before fitting a
model. The time series of the differenced data is then plotted, as well as the sample
ACF and sample PACEF plots.
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The above plots indicate the differenced data for exchange rates are stationary, as the
ACEF rapidly goes towards zero after lag 1, while the partial ACF is within the , with
This suggests an ARIMA(0,1,0) model may be an appropriate model for exchange rates.

When the ARIMA(0,1,0) was fitted, there are certain criteria that needs to be analysed.
The AIC (Akaike Information Criteria) for this model is -2035.93 (Other information
can be found in the Appendix). To see that this model minimises the AIC, the AIC from
the ARIMA(0,1,1) and ARIMA(1,1,0) models are found and compared with the AIC for
the proposed model. The AIC from ARIMA(0,1,1) model is -2035.74 while the AIC
from ARIMA(1,1,0) model is -2035.79. The AIC of the proposed ARIMA(0,1,0) model
is clearly smaller than the AIC of the other 2 models.

Another way to assess the model is to assess the behaviour of the residuals from the
fitted model. The standardised residuals, sample ACF of residuals and p values of
Ljung-Box (Portmanteau) statistics are plotted on the graph below.
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From the residual plot, it can be observed that the residuals form a good approximation
to a white noise process, with no real seasonal pattern in fluctuation or any trend in the
residuals. The ACF of Residuals plot shows that most of the sample autocorrelations lie

within the 95% confidence interval (£ =0.08 ) indicated by the dotted lines.

The p values for the Ljung-Box (Portmanteau) statistics are all outside the rejection
region, which means that the null hypothesis, which states the residuals are white noise
with zero mean and variance 1, is accepted. The three above plots all indicate that
ARIMA(0,1,0) is an appropriate model of the time series of exchange rates.

Based on the analysis of the residuals for the fitted model and the AIC, it can be
concluded that the exchange rates can be fitted using an ARIMA(0,1,0) model, which
implies (1-B)X, = Z,, where X, is the exchange rate at time t, B is the backshift

operator and Z, are uncorrelated white noise. This is equivalentto X, = X, |, + Z,,

which suggests that exchange rates follow a random walk process, which is typical for
most financial data. Thus, most economists will try to simulate exchange rate
movements using the random walk (ARIMA(0,1,0)) process.

This analysis was performed in R. The code and further results can be found in the
Appendix.



Appendix

1. Part1

1.1 — Code for Question 1

First, the matrix R was entered into MATLAB and stored as “R”. Then P(t) is calculated
for 100 equally spaced points between time 0 and time 10. The relevant entries are
collected and stored and then plotted.

Create vectors to store transition probabilities for each rating
p=linspace(1,10,100); For AAA
g=linspace(1,10,100); For AA

( )
r=linspace(1,10,100); For A
( )

s=linspace(1,10,100); For BBB
format long
for t=1:100
A=expm (R* (£/10)); Function to find exponential of matrices, noting P(0) is

identity matrix

Collects entries which are relevant to each rating and store them

p(t)=A(73);
q(t)=A(74);
r(t)=A(75);
s(t)=A(76);

end
t=linspace(1,100);

Plot probabilities of default over time for all 4 ratings

figure (1)

plot(t/10,p, '-r',t/10,q, '-b',t/10,r, '-k',t/10,s, '-g")
t/10 scales time to between 0 and 10

xlabel ('Time (years from 1995) ")

ylabel ('Probability of default rating' )
title('Probability of default for AAA, AA, A, BBB' )
grid on

Plot probabilities of default over time for AAA, AA and A
figure(2)

plot(t/10,p, '-x',t/10,9,"'-b',t/10,r, '-k")

t/10 scales time to between 0 and 10

xlabel ('Time (years from 1995) ")

ylabel ('Probability of default rating' )
title('Probability of default for AAA, AA, A' )
grid on

Plot probabilities of default over time for AAA, AA
figure (3)

plot(t/10,p,'-x',t/10,q9, "-b")

t/10 scales time to between 0 and 10

xlabel ('Time (years from 1995) ")

ylabel ('Probability of default rating' )
title('Probability of default for AAA, AA' )
grid on
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Plot probabilities of default over time for AAA
figure (4)
plot (t/10,p, '~r')

t/10 scales time to between 0 and 10

xlabel ('Time (years from 1995) ")

ylabel ('Probability of default rating' )
title('Probability of default for AAA' )
grid on

In order to find the long run probabilities:

Enter matrix to solve by deleting last row of R, transposing it and then adding a row
vectors of 1 to add the condition that all probabilities will add to one.

m =

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

-0.0059 0.0544 0 0 0 0 0 0 0
0.0059 -0.0816 0.0251 0 0 0 0 0 0
0 0.0272 -0.0564 0.0945 0 0 0 0 0
0 0 0.0313 -0.1323 0.0691 0 0 0 0
0 0 0 0.0315 -0.1487 0.1022 0 0 0
0 0 0 0.0063 0.0797 -0.1981 03019 0 0.9677
0 0 0 0 0 0.0767 -09811 0 0.1935
0 0 0 0 0 0 03774 -3.1579 0

Create column vector so that mP=b where P is the long run probability vector
>>b=[1;0;0;0;0;0;0;0;0]
>>m\b Solve for P in mP=b

ans =

0.7642
0.0829
0.0898
0.0298
0.0163
0.0145
0.0013
0.0002
0.0010
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2.1 Part II Question 1
2.1.1
Simulates values of S(t) for 150000 values of t, noting each value of t increments by
1/12.
t=1
Generate vectors used to store values of S(t) for both methods
S1=seq(1:150000)
S1[1]=1 Noting S(0)=1
S2=seq(1:150000)
S2[1]=1 Noting S(0)=1
Generate vectors used to store values of InS(t)/t for both methods
QI=seq(1:150000)
Q2=seq(1:150000)
Generate vectors used to store values of [(InS(t)-pt)*2]/t for both methods
P1l=seq(1:150000)
P2=seq(1:150000)
while (t<150001) {  Loops until 150000 values are generated
u=0.1
0=0.3
de=1/12
v=u-0"2/2
el=rnorm(1,0,1)
if (t<150000) {
S1[t+1]=(1+u*dt+o*el *sqrt(dt))*S1[t]
S2[t+1 ]=exp(v*dt+o*el *sqrt(dt))*S2[t]
}
QI[t]=12/t*log(S1[t]) Need to multiply by 12 as time increments as 1/12
Q2[t]=12/t*log(S2[t])
P1[t]=12/t*(log(S1[t])-0.055*t/12)"2
P2[t]=12/t*(log(S2[t])-0.055*t/12)"2
t=t+1

—_—

}
Plots function for 1(a) Method 1

plot(Q1, type="1", lwd=3, xlab="Time", ylab="(In[S(t)])/t", main="Result from Method
1 H)

Plots function for 1(a) Method 2

plot(Q2, type="1", lwd=3, xlab="Time", ylab="(In[S(t)])/t", main="Result from Method
1 H)

>Q1[150000] = 0.0558077 < Used as an estimate of the limit

Plots function for 1(c) Method 1

plot(P1, type="1", lwd=3, xlab="Time", ylab="((In[S(t)]-p)"2)/t", main="Result from
Method 1")

Plots function for 1(c) Method 2

plot(P2, type="1", lwd=3, xlab="Time", ylab="((In[S(t)]-p)"2)/t", main="Result from
Method 2")

12



2.1.2 — Derivation of Gamma distribution of the function
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differentiating \/;_ J- e 2d with respect to x. Using the Fundamental theorem of
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03
calculus, this gives:

X 1 X
e 2100 x?le_ﬁ |
fo(x)= 1 = T where I'(=) = 7, which is in the form of
03v2x2r  (0.B)? )

F(% ,0.18) distribution.
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2.2 Part II Question 2
Code is in Blue

Results are in Red
Comments are in Green

Collects the exchange rate data from a CSV file

exchange <- read.csv("C:/Users/Chung-Yu/Documents/Uni/Actuarial
Studies/ACTL2003/Assignment/exchange.csv", header=T)
exchange<-ts(exchange[,1],start=1980,freq=365/7)

Plots time series of data as well as sample ACF and PACF
par(mfrow=c(2,2))

plot(exchange)

acf(exchange)

acf(exchange, type="partial")

Plots the differenced data
par(mfrow=c(2,2))
plot(diff(exchange))
acf(diff(exchange))
acf(diff(exchange), type="partial")

fit=arima(exchange, order=c(0,1,0)) fit ARIMA(0,1,0) model
tsdiag(fit) Shows residual plots for fitted ARIMA(0,1,0) model, used for residual
analysis

> fit=arima(exchange, order=c(0,1,0))
> fit

Shows AIC for ARIMA(0,1,0) model
Call:

arima(x = exchange, order = ¢(0, 1, 0))

sigma”2 estimated as 0.0007593: log likelihood = 1018.97, aic = -2035.93

The next 2 ARIMA models are fitted to compare the AIC and to see that the AIC for
ARIMA(0,1,0) is optimal.

> fit=arima(exchange, order=c(0,1,1))

> fit

Call:
arima(x = exchange, order = ¢(0, 1, 1))

Coefficients:
mal
-0.0610
s.e. 0.0449
sigma”2 estimated as 0.0007563: log likelihood = 1019.87, aic = -2035.74

> fit=arima(exchange, order=c(1,1,0))

14



> fit

Call:
arima(x = exchange, order = c(1, 1, 0))

Coefficients:
arl
-0.0629
s.e. 0.0461

sigma”2 estimated as 0.0007563: log likelihood =1019.89, aic =-2035.79
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