so this equation becomes
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Part i

In solving chis equation x s considersd Lo be a constant, so the particulac
integral contains threr parts: one each from the exponential terms, #==* and
e~ and ooe from the last term. Now the equation
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where o and @ are constants, has the general solution
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where 7y and 'y are constants. Since n=xf¢, f~ rfeunless a = §=0. Thus
unless o = F =1, ¢} ~ ¥; but in writing the solution in the form of equation 1
it 15 mssumed thao [e¥5] < [Yol and for this co be true wenesd o = F=10 or
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Then Yy satsfies the equetion
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Part iv
Equation 4 for Alchcan be solved to give
3
Afzy = g

for somee constant . On dividing equation § by equation 7 we obiain
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for snme constant &
Finally, a particular integral of equation 5 iz
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There is also a contribution Oy (£)+ Ca{rle™" having the same form as ¥y which
we ignore. If the calculation were to be carried thoegh to O0¢?) then it would



