M821 TMAO1 2001
solution for question 3

Part {i)

The potential ¥z} = {£* — 1) is zero at 2 = +1 and positive elsewhere. Thus at
r = 11t has mimima and in between must have a maximum which, by symmetey, muost
be al £ = 0 and here V(0] = 1. For |2] 3 1, Viz) ~ ', The graph of the potential is
shown in the left. hand figure.
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The potantial 1 = (2= 1)2. Phase curves for the potential
Vo (57 = 1)5.
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50 mation is possible anly if £ > 0. The graph of the potential shows that there are
centres-at = 41 and asaddle at = =10,
IT E' > ¥{0) = 1 the phase curves enclose the crigin and the motion s periodic. If
0 £ B« 1 moiion is restricted 1o either the left or the right of the origin: both types of E’; krkE
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motion are periodic. Some typical phase curves are shown in the right hand figure.
The phase curve with energy £ = V{0) = | is special, being the separatrix that
divides the phase space into these three types of motion. For this potential the only
non-periodic motion i3 represented by the separatrix; all other motion is periodic. The
equation of the separatrix, shown by the thick line in the ahove figurs, is
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Part {ii) [Tatal 3]

The potential V{x} = £*/{1+ 27} is infinite at 2 = —1. Near the origin it behaves as
Viz) = 2* + 0{*) and Viz) — 0 as * — ce, s it has a maximum for some positive
value of . The graph of this potential is shown in the following figure.



