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Introduction

There is probably no other instance in human intellectual history in which so much time
and effort was spent merely to reach a satisfactory definition as that for limit. The concept is very
closely related with two other fundamental concepts of mathematics and exists alongside both
infinity and continuity. The Greek scholars were the first who seriously considered problems of
continuity and infinity based on the concept of ‘number’. Various attempts were made by them to
include the concept of number into geometry. Being able to construct a line segment of any

rational m/n length (m,ne Z,n #0), the Greeks discovered around 400 B.C. that a diagonal of a

unit triangle is an irrational number, which falls out of the number concept. Questions of
continuity and infinity seem to have represented a complete mystery to the Greek scholars. The
difficulties were clearly indicated by the famous Paradoxes of Zeno, of which it is worth quoting

the following:

Achilles and the Tortoise
\ In a race between Achilles and a tortoise, the latter has been given a head
:\ start- no matter how short. In order to catch up with the tortoise, Achilles
5,§must first cover half the distance separating them between the start point a to
t of the tortoise, the tortoise moved to ¢, and while Achilles dashed to c, the
oise scuttled off to d and so on in intervals that became shorter but never

get closer and closer, he would never quite catch up to the tortoise- no
ow fast he rims.(1. n 275-276).

years after Zeno, here is the explanation why Achilles can finally catch up to and pass the tortoise:
Although the number of time intervals is infinite, the total amount of time is not necessarily infinite.
Suppose the tortoise is given a head start of 3 meters and advances at the speed of 3m/s and Achilles ambles

along at 6 m/s, Achilles will catch up to the tortoise at the end of (see Appendix 1):
(1) —+—+—+—+
4

b}

The space above introduced by °...” stands for the infinite number of decreasing fractions called a
sequence, that add up to 1 second. Although it seems not so difficult to express every term of the sum with

respect to its place - no matter how far it is- the entire process of computation of the sum of the infinite number



of terms is not clear. On the other hand, even if one could intuitively estimate, that the terms of the above
sequence tend to zero (converge to zero), as one chooses a term far enough, it is still unclear, how to justify
one’s intuitive guess, because he/she might have intuition different from others. The space “...” in (1) reflects
the distance between first attempts of ancient scholars to halt ‘leak’ of information about incompleteness of
rational numbers they discovered, and the modern era development of old concepts such as differential and
integral calculus, which solved and interpreted ancient and modern enigmas.

Amongst the earliest and most significant contributors to rigor in calculus was A. Cauchy. He explained
the meaning of the above expression ‘tends to zero as the term is far enough’ in following terms:

‘ When the successive values attributed to a variable approach infinitely a fixed value so as to end by
differing from it by as little as one wishes, this fact is called the limit of the others. G, p-x)

This definition seems excessively vague from our viewpoint: the phrases ‘successive values’,
‘approach indefinitely’, ‘as little as one wishes’ are suggestive rather then mathematically precise. Therefore A.
Cauchy’s definition needed to be refined in terms of formal mathematical language and this was done by H.E.
Heine forty three years after the first publication of the above definition of limit. Heine defined the limit of a
function f(x) at xy:

‘If given any &, there is ann, such that for 0 <1 <, the difference f(x£mn)— L is less in absolute

value than &, then L is the limit of f(x) for x=x,.’

This statement, which is now the accepted definition of limit, is absolutely unambiguous. With minor
modifications, it applies to many other kinds of limiting processes, including sequences and series of numbers
and functions, functions of several variables, complex functions etc. The paradox of Zeno regarding motion
disappears once the definition of continuity based on Heine’s definition of limit is understood. This also led to
clear definitions of number, continuity, and derivative enabling nineteenth century scientists to provide a
logically precise development of calculus. With an instrument as powerful as calculus, modern mathematicians
solved problem of estimating volumes of solids formulated by Archimedes.. We strongly believe that it is
impossible to teach someone this concept. However those lucky to touch it may feel as great a pleasure as those
who understand the Bach harmonies. In this essay we discuss only three applications of the concept, namely, the
limit of sequence, the limit of series and the limit of function of one real variable supporting our reasoning with
some samples. As the amount of words of the essay is strictly LIMITED we are not discussing a concept of
infinity or continuity, which are based on the concept of limit. However when necessary we give outline of the

former without further contemplations or speculation.



Limit of Sequence

{x,}_ is a function defined on a set of real numbers for all positive integers.
The intuitive definition of the sequence is already outlined in the Introduction. Roughly speaking,
Definition 1:{x, }::1 has a limit L < Rif (x,-L) becomes arbitrary small for all sufficiently large

values of n. In this case we write

@ jm x,=L-

n-

From this crude description, we would expect that the sequence 1,1,... has the limit 1, whereas the

11
sequence I,E,E,D has a limit 0 while the sequence 1,-2,3,-4,... does not have a limit. On the other hand, our

intuition is not sharp enough to deduct, whether the sequence{ns{ 7zn)} _ has a limit and to compute the

limit if there is one. Even a relatively simple sequence as , -1,1, -1,..., so-called oscillated sequence, could lead
to the wrong intuitive conjecture, that it has two limits. So, we need an accurate definition of the ‘limit of a
sequence’ based on which we would become capable to predict for any given sequences the existence of its
limit and to evaluate it.

We emphasise that limit L should be a real number. Formally, Definition 1 means, that

Definition 2: (3) Ve>0 IN:Vn>N .. |x, —L|<¢.

0
n=1>

We can interpret it as follows: the proof that L is the limit of a given sequence {x, } consists upon

being given an € > 0 of finding a value of N, such that the inequality |x, — L| < & holds for all values of n

except at most a finite number, namely 7 =1, N —1. The value of N will, in general, depend on the value of ¢ .
Figure 1 illustrates Definition 2. All of the x,, except at most a finite number of terms, must be inside the
parentheses.
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Figure 1

How Definition 2 works in practice?



-~ », Which can be expressed as x,=1/n (n=1,2,3,...). We

W | —

1
27

Example 1: Consider the sequence 1,

already made a conjuncture that 0" Let us prove it.

1
X,=Im —=
n—> o N

n— ©

Following Definition 2 for given & > 0 we must find N so that for all n>N: |xn —q <eg.

Substitution of x,=1/n into the last inequality leads to

Lo

1
< &, or, considering n>0 (4) n=—.
n &

1 1
Thus if we choose N so, that //N< g, then certainly (4) will hold since — < — for all n larger than N.
n

1 1 1
Now — < ¢ iff N >— . Hence if we take any integer N such that N > —, then (3) will hold for the given
n & &

sequence with L=0. This proves that ;3 X n =0 although not one term of the sequence is equal to zero.
n— ©

Example 2 Examining the sequence x,=/(n=1,2,3,...) in terms of Definition 2 we can prove that our

guess Im x, =1was correct. Really, if L=/ then |x, —L| = |1—1| =0for any £ > 0. So in this case (3)

Hn—>00

always holds and NV does not depend on & .

Example 3. Consider the sequence 1,2,3,..., which can be expressed as {xn }:O:1 = n .It can be proved
by contradiction using the same & -N method, which leads to the statement that the sequence 1,2,3,... has no
limit or, that {x, }"_, tends to infinity when n tends to infinity or diverges to infinity.

Infinity is certainly not a number. Moreover, it is not a quantative concept. It is a quality of increase

beyond bound. Although the concept of infinity is difficult to grasp we can define it as not finite, contrary to
finite, which is completely determinable by counting or measurement. Following the Galileo statement that
there are as many squares as there are natural numbers, G. Cantor proved that the set of all integers, the set of all
natural numbers, the set of all rational numbers and the set of all algebraic numbers are equivalent to the set of
all natural numbers as they can be put in one-to-one correspondence with the infinitude of natural numbers.
Following this concept we may think of all divergent to infinity sequences as having the ‘same manyness of
elements’ as, by the definition, each sequence has one- to one correspondence with the set of all positive

integers, hence belong to ‘aleph null’ set of infinity ('p.258-264). Remembering though, that infinity cannot be



expressed by any number (other things, like motherhood, happiness, faith belong to the qualitative category of

concepts, that humans were hopelessly trying to describe by quantity), we discourage the idea to resolve

o0
indeterminate problems of — ;000 ; substituting each term of the former by equal numbers in case of; for
o0

n

a
example, {—‘ } simply because there are no numbers equal to infinity.
n:

Coming back to Example 3 whatever large number we choose there are always terms, which would

exceed it. This reasoning seems to breach Definition 2. Really, we determine infinite as not a number, hence in

this case the inequality |x, — L| < & makes no sense. So Definition 2 needs amendments such that there would

not be a need to use the ‘suspicious’ concept in notation. We have already proved, that a sequence may have a

limit, which is different to any of its terms, so the fact that ‘00’is not a number should not contradict the
perception of a limit. Following experience with the sequence {x, } _ =n we know, that

Definition 3 For any given positive number M, there is an integer N (depending on M) such, that x,>M
forevery n =2 N.

This definition binds concepts of convergence to a finite limit as to a real number and divergence to
infinity.

Is a sequence whose terms get © too big’ as in Example 3, the only kind, which does not have a limit?

We already consider a ‘suspicious’ example x, =1,—1,1,—1,. Let us suppose that it has a limit, so

. 1
m x, = L. Definition 2 has to be satisfied for any & > 0. Let us choose & = E . Following (3) there would

1
be a positive integer N such as ‘(—1)” - L| < 5 fr n>N.

If n is even then the last expression means:/1-L/< % and for n odd it is /~1-L/</. This implies that L
should be less than half unit from 1 and less that half unit from —1, which is impossible. So by contradiction we
proved that the sequence 1,-1,1,-1,... has no limit though the terms of the sequence all have absolute value 1 and
hence are not ‘too big’. It is worth noticing, that the initial guess, that there may be two limits of the above
sequence is proved to be wrong.

The last example illustrates one very important property of limit of sequence: a sequence has at most

one limit.



Limit of Series
Another very important application of the concept under discussion is the limit of series of real

numbers, which already appeared in the Zeno Paradox (see formula (1)). Formally

Definition 4 Infinite series of real numbers can be defined as an ordered pair <{an}f:1 R >

n
where {a,} "  is a sequence and {s,} _| = Zai is called the n" partial sum of the series that forms a new
=1

sequence {s,}, which can either converge to the limit S, if the limit does exist m s, =S, or diverge, if Im s,
n—o n—

does not exist or if s, diverges to 0.
From the above definition it is easy to deduce, that the behaviour of series depends on the behaviour of
the sequence of its partial sums. Moreover, we can make a conjuncture, that for partial sums to converge to a

real number, the limit of the term a, ought to become ‘smaller and smaller’, or, formally, tend to zero as » tends

n
to infinity. Unfortunately, this property is not sufficient to ensure, that{s, } _ = Za . be convergent. On the
=)

other hand, it can be used to determine a divergence of a series if im a, # 0.
n—0

Following example illustrates the point of the discussion.

0

. . 1 .1 ,
Consider series 8, = Z— . From Chapter 1 we know that im — = 0. However, it can be proved, that
i=1 1 n

n—>w
s, diverges when n — 00. This is an example of a harmonic series, which terms are reciprocal to arithmetic
sequences. In music, vibrating strings of the same material and with equal diameter, equal torsion and equal
tension and whose lengths are proportional to terms in a harmonic sequence generate harmonic tones. Referring
to A. Pushkin his personage Salieri may not be too wrong trying to test * harmonies by algebra’. Knowing much
more about harmonic series than people in XVIII century, we would rather opt for the real

analyses than for algebra.




Limit of Function of the Real Variable

Chapters 1 and 2 were concerned in mapping discrete integers in set of real numbers. We are now
interested in mapping an interval 4 of real numbers in the set of real numbers B.

Definition 4 We say that fis a function from A to B if for every a € Athere is exists a unique b € B
such that (a,b) € [, or f(a)=b

By contrast to a rational number, which caused concern to the Greek mathematicians due to the lack of
completeness, real numbers R possesses the completeness property. This implies that real numbers in an interval
A cannot be ordered by corresponding integer as we do for sequences. We order rational numbers by
comparison of their values. So the definition we used for the limit of sequences and series needs adoption with
respect to the completeness property of the former. Let @ € R and let /' be a real-valued function whose domain
includes all points in some open, interval (a-h, a+h) except, possibly, the point a itself.

Definition 5 We say that f(x) approaches L (where L € R)as x approaches a if giveng > 0, there

exists 0 > 0 such that|f(x) —L| <égas 0< |x—a| < J .It is worth noting that point a need not be in the

.91 X
domain of f. Thus well known Im —— = 1 although the function is not defined in n=0.
n—-0  x

Definition 5 can be graphically illustrated (see Figure 2).

OSENC
( . ee o0 )
L€ e Figure 2
In order for f(x) to approach L as x approaches a the following must be true: given any & parentheses
about L there must exist § parentheses about a such that every arrow which begins inside the§ parentheses
(except, possibly the arrow if there is one, that starts at @) must end inside the & parentheses.
Roughly speaking, the following can be seen on the graph of a function f such that (Figure
3): as the x coordinate of a moving point of the graph gets close to a (from either the right or the

left), the height f{x) of the point heads toward L. Thus both lines introduce functions y=f{x) (in

red) and y=g(x) (in green) satisfy im f(x) = L. Moreover, following Definition 5 even if f(x) and



g(x) are defined such that f(2) and g(2) are not equal to 3, both functions still have 3 as their limit

mnx=2.

Figure 4

Figure 3
y=h(x)

A
y=fx) y

L=

/|

On the other hand, the function y=/h(x) in Figure 4 has no limit at =2 because /(x) gets close to 3 when

x gets close to a in the left, while A(x) gets close to 2 when x gets close to a on the right. From the uniqueness

»
»
X

v
—
S

[ —
N

property of a limit hence there is no single number L such that 4(x) gets close to L when x gets close to a, we

deduct that 4#(2) has no limit.

.1
Finally, let us illustrate function f(x)=8n — (x # 0). Here (see Figure 5) as x gets close to a=0,
X
the value f{x) oscillates rapidly. Even if we look only at one side of g, it is clear that there is no number L toward

which the value f(x) tends. Hence f'has no limit at 0.

Figure 5 f(x)=sin(1/x) (x£0)
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To emphasise the strong analogy between Definitions 4-5 let us fill the ‘Table of analogues’ (see p.9).
If each entry in the right-hand column is substituted for the corresponding entry on the left, we change

Definition 4 into Definition 5. However, more than mechanical process is involved here. Corresponding entries

in the table actually have the same meaning. For example {s, }, _ is a function of an integer variable.



Furthermore, all algebra operations hold on both concepts with exceptions when we have indeterminate

.. 0 .. . .
limits, such as ;00 ;00 ;0 ;00° ;1. Many limits of an indeterminate form can be evaluated by

olo

88

b
a L’Hospitale formula, which uses methods of differential calculus.
Contrary, the forms 00X 00 =00 ;00400 =00 ;-0 —00 = 00 are evidently determinate, in the sense

that, for instance, if Im f(x) = im g(x) =0 then im f(x)xIm g(x)=0

. o0
Other determinate forms are 0 ;%/00 .
Expressions of the form a/0, where a is a non-zero number or o0 are undefined, because if y is very

small, then a/y will be very large in size but positive or negative according to the sign of y and a. Also 0™ is

undefined, because x]ig(l)+ xi/IE =40 ,but x]ig})_x_g ) = o0 if g(x) equals the greatest odd integer < i
Table of analogues

Limit of series {s.}>, n Sn L 0 g N n>N

Limit of function (RV)  f{x) x L a £ o) 0< |x — a| <o

As has been stated one of the most important application of the concept of limit is in conjunction with
concept of continuity. Intuitively we can deduce that continuous function at a point has no gaps in this point.
Formally, using limit concept, we can express this as

Definition 6 We say that the function f of a real variable is continuous at a point a if
im f(x) = f(a).
Definition 6 really demands that 2 conditions be fulfillgd in order that f be continuous at a. The first

condition is that the Im f'(x) must exist; the second is that this limit be equal to f{a). In particular, if f{x) is not
Xx—a

defined, thenf cannot be continuous at a. For example, the function f=sinx/x (x=0) is not defined at x=0 and

hence is not continuous at x=0 even though its limit exists and equal to 1. we can define f{0)=1, then it becomes

continuous at (0) since Im f'(x) = f(0) =1.For the fact that continuity is defined using limit we can deduct
x—0

that all algebra operations hold for continuous functions.



Conclusions

People use words ‘infinity’, ‘limit’, ‘continuity’ every day: ‘government applies a limit to
someone’s activity’, ‘someone limits one’s ambitions or aspirations’; ‘one’s waiting time on the
NHS lasts for an infinite period’, ‘someone may express love as being infinite’; ‘one cannot
complete refurbishment because the production of the wallpaper he/she needs is discontinued’,
elc.

We face those concepts everywhere. Musical harmonies have pure mathematical structures
and obey rules of harmonic series, which have an explicit relation with limit. The complexity of
the concept made it one of the most important in philosophy. Theology appeals to it in the most
important doctrines. On the other hand, scientists use these common words to define fundamental
concepts of mathematical knowledge. The concept of limit led to differential and integral calculus
and modern methods of approximation, which has an infinite variety of applications in modern
physics, astronomy, chemistry, engineering, and biology. However, as we emphasised throughout
the essay the concept of limit is still beyond understanding in a number of cases; the use of the
Cauchy definition solved old problems, there exist undefined or indeterminate forms of limit, that
are still unsolved.

Just a final remark: re-phrasing Ludwig Witgenstein ‘ the limits of my words mean the
limits of my world’ (, p.826). We strongly believe that although we are still limited by our
English, the presented discussion delivers and clarifies our view on the most important and

conceivably the most difficult concept in mathematics.
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Appendix 1
Achilles and the tortoise

We provide calculations supporting the Paradox based on the assumptions:

tortoise speed- 3m/sec (constant)

Achilles speed- 6 m/sec (constant)

head start given to tortoise- 3 meters

- first step:

distance run by Achilles: fm time spent: 3m
67

by tortoise: 3m/sec x 0.5 sec=1.5 m

- second step:

by tortoise:3m/sec x 0.25sec=0.75 m

- third step:

by tortoise:3m/sec x 0.125sec=0.375 m, etc.

Summing up all these infinite number of interval leads to the infinite geometric sequence
with the first term a=2 and the ratio r="%. The definition of the concept of limit following
development of the real analysis resulted in the formula of convergence of the geometric series

with —1<r <1, which turned the sum of infinite number of terms into a finite figure. Thus,

|
— +[ A

1 1
§+b 1 =1l .
2

7

1 1
—+—+
2 4
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