Calculus III, 2011: Coursework 4
 Will Sutherland.

The deadline is $4 P M$ on Thursday Oct 27th. Hand in Question 4 only to the green box on the basement floor of the Maths building.

1. Calculate $\nabla \cdot \mathbf{F}$ (i.e. div \mathbf{F}) and $\nabla \times \mathbf{F}$ (i.e. curl \mathbf{F}) for each of the following vector fields.
(a) $\mathbf{F}=(3 x+y) \mathbf{i}+(2 x+y) \mathbf{j}+(4 z+3 y) \mathbf{k}$
(b) $\mathbf{F}=x^{3} \ln z \mathbf{i}+y^{2} \sin z \mathbf{j}+x z^{2} \mathbf{k}$
2. (a) Prove that $\nabla \cdot \mathbf{r}=3$ and $\nabla \times \mathbf{r}=\mathbf{0}$, where \mathbf{r} is the usual position vector.
(b) If \mathbf{a} is a constant vector, show that $(\mathbf{a} \cdot \nabla) \mathbf{r}=\mathbf{a}$, and $(\mathbf{a} \cdot \nabla) r=\mathbf{a} \cdot \mathbf{r} / r$
3. If U is a scalar field and \mathbf{F} is a vector field, prove from the definitions that

$$
\nabla \cdot(U \mathbf{F})=U(\nabla \cdot \mathbf{F})+(\nabla U) \cdot \mathbf{F}
$$

(this is Equation 3.4 of the lecture notes).
4. Hand-in question: Using the identities for differentiation of products,
(a) Prove that if two vector fields \mathbf{A} and \mathbf{B} are irrotational, then $\mathbf{A} \times \mathbf{B}$ is solenoidal. [2]
(b) Prove that for any function $f(r), f(r) \mathbf{r}$ is irrotational.
(c) Let U and V be any two scalar fields. Prove using suitable identities that the Laplacian of their product is given by

$$
\nabla^{2}(U V)=U \nabla^{2} V+2(\nabla U) \cdot(\nabla V)+V \nabla^{2} U
$$

Hint: start from the definition $\nabla^{2} f \equiv \nabla \cdot(\nabla f)$ (Eq. 3.10 of notes)
5. Evaluate the divergence and curl of $\mathbf{a}(\mathbf{r} \cdot \mathbf{b})$, where \mathbf{a} and \mathbf{b} are constant vectors. (Hint: you may find it useful to work out $\nabla(\mathbf{b} \cdot \mathbf{r})$ first; see also results from Question 2.)

