Calculus III, 2011: Coursework 4 Will Sutherland.

The deadline is 4PM on Thursday Oct 27th. Hand in Question 4 only to the green box on the basement floor of the Maths building.

- 1. Calculate $\nabla \cdot \mathbf{F}$ (i.e. div \mathbf{F}) and $\nabla \times \mathbf{F}$ (i.e. curl \mathbf{F}) for each of the following vector fields.
 - (a) $\mathbf{F} = (3x+y)\mathbf{i} + (2x+y)\mathbf{j} + (4z+3y)\mathbf{k}$
 - (b) $\mathbf{F} = x^3 \ln z \, \mathbf{i} + y^2 \sin z \, \mathbf{j} + x z^2 \, \mathbf{k}$
- 2. (a) Prove that $\nabla \cdot \mathbf{r} = 3$ and $\nabla \times \mathbf{r} = \mathbf{0}$, where \mathbf{r} is the usual position vector. (b) If \mathbf{a} is a constant vector, show that $(\mathbf{a} \cdot \nabla)\mathbf{r} = \mathbf{a}$, and $(\mathbf{a} \cdot \nabla)r = \mathbf{a} \cdot \mathbf{r}/r$
- **3.** If U is a scalar field and **F** is a vector field, prove from the definitions that

$$\nabla \cdot (U\mathbf{F}) = U(\nabla \cdot \mathbf{F}) + (\nabla U) \cdot \mathbf{F}$$

(this is Equation 3.4 of the lecture notes).

- 4. Hand-in question: Using the identities for differentiation of products,
 - (a) Prove that if two vector fields \mathbf{A} and \mathbf{B} are irrotational, then $\mathbf{A} \times \mathbf{B}$ is solenoidal. [2]
 - (b) Prove that for any function f(r), $f(r)\mathbf{r}$ is irrotational. [3]
 - (c) Let U and V be any two scalar fields. Prove using suitable identities that the Laplacian of their product is given by

$$\nabla^2(UV) = U\nabla^2 V + 2(\nabla U) \cdot (\nabla V) + V\nabla^2 U$$

Hint: start from the definition $\nabla^2 f \equiv \nabla \cdot (\nabla f)$ (Eq. 3.10 of notes) [5]

5. Evaluate the divergence and curl of $\mathbf{a}(\mathbf{r} \cdot \mathbf{b})$, where \mathbf{a} and \mathbf{b} are constant vectors. (Hint: you may find it useful to work out $\nabla(\mathbf{b} \cdot \mathbf{r})$ first; see also results from Question 2.)