Calculus III, 2011: Coursework 2

Will Sutherland.
The deadline is $4 P M$ on Thursday Oct 13th. Hand in your solution for Question 4 only to the green box on the basement floor of the Maths building.

1. Given a plane defined by $2 x-2 y+z=12$, find:
(a) The unit vector normal to the plane ;
(b) The point in the plane closest to the origin.
(c) The perpendicular distance from the point $(6,-6,3)$ to the plane.
2. Find the gradient vector (∇f) for $f(x, y, z)=2 x^{3} y+3\left(x^{2}-y^{2}\right)+z$.
3. Consider a sphere of radius 9 centred at the origin.
(a) Express the surface of the sphere in the form $f(x, y, z)=0$.
(b) Find a plane tangent to the sphere at the point $\mathbf{r}_{1}=(7,4,-4)$.
(c) Find the position vector of points on a line through \mathbf{r}_{1} and normal to the sphere.
(d) Find the position vector of points on the line through \mathbf{r}_{1} and $\mathbf{r}_{2}=(4,7,4)$.

4. (*) Hand-in question:

(a) Calculate the volume of a parallelepiped (the 3D version of a parallelogram), where 3 edges are given by the vectors $2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ and $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{i}-\mathbf{j}+2 \mathbf{k}$. [5]
(b) Find equations for the (i) tangent plane and (ii) normal line, to the surface $3 x^{2}-y^{2}+2 z^{2}=1$, at the point $P_{0}=(1,2,-1)$.
5. Find the directional derivative of the scalar field $V=4 y^{2} z+x y z^{2}$ in the direction of the vector $(2,-1,-1)$ at the point $P=(1,-2,-1)$. [Hint: write down the unit vector \mathbf{n} which has the same direction as the given vector, and evaluate $\mathbf{n} \cdot \nabla V$ at the point P.
6. Prove that $\nabla\left(r^{n}\right)=n r^{n-2} \mathbf{r}$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is the usual position vector and $r=|\mathbf{r}|=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$.

