The deadline is $4 P M$ on Thursday Oct 13th. Hand in your solution for Question 4 only to the green box on the basement floor of the Maths building.

1. Given a plane defined by $2 x-2 y+z=12$, find:
(a) The unit vector normal to the plane ;
(b) The point in the plane closest to the origin.
(c) The perpendicular distance from the point $(6,-6,3)$ to the plane.

Answers:

(a) The given equation rewritten in vector form is $\mathbf{r} \cdot \mathbf{a}=12$ where $\mathbf{a}=(2,-2,1)$; so the unit vector normal to the plane is $\hat{\mathbf{a}}=\mathbf{a} /|\mathbf{a}|=\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right)$.
(b) Dividing the above equation for the plane by $a=3$, we have $\mathbf{r} \cdot \hat{\mathbf{a}}=4$, so $|\mathbf{r}| 1 \cos \theta$ $=4$, where θ is the angle between \mathbf{r} and $\hat{\mathbf{a}}$. The smallest possible r will occur when $\cos \theta=1$, so \mathbf{r} is parallel to $\hat{\mathbf{a}}$. Thus the distance of the plane from the origin is 4 , and the closest point to the origin is $\mathbf{r}=4 \hat{\mathbf{a}}=\left(\frac{8}{3},-\frac{8}{3}, \frac{4}{3}\right)$.
(c) Let $\mathbf{p}=(6,-6,3)$ be the position vector of the given point. The line through \mathbf{p} perpendicular to the plane is $\mathbf{r}=\mathbf{p}+t \hat{\mathbf{a}}$ (for any real t), where t is the parameter. This line will cross the plane when $(\mathbf{p}+t \hat{\mathbf{a}}) \cdot \hat{\mathbf{a}}=4$. Evaluating p. $\hat{\mathbf{a}}=9$, so the solution is $t=-5$. So the perpendicular distance of \mathbf{p} from given plane is 5 (and the closest point to P in given plane is $\mathbf{p}-5 \hat{\mathbf{a}}$).
2. Find the gradient vector (∇f) for $f(x, y, z)=2 x^{3} y+3\left(x^{2}-y^{2}\right)+z$.

Answer: From the definition of ∇f, taking the partial derivatives of f with respect to x, y, z, we get $\nabla f=\left(6 x^{2} y+6 x\right) \mathbf{i}+\left(2 x^{3}-6 y\right) \mathbf{j}+1 \mathbf{k}$.
3. Consider a sphere of radius 9 centred at the origin.
(a) Express the surface of the sphere in the form $f(x, y, z)=0$.
(b) Find a plane tangent to the sphere at the point $\mathbf{r}_{1}=(7,4,-4)$.
(c) Find the position vector of points on a line through \mathbf{r}_{1} and normal to the sphere.
(d) Find the position vector of points on the line through \mathbf{r}_{1} and $\mathbf{r}_{2}=(4,7,4)$.

Answer: (a) $x^{2}+y^{2}+z^{2}-81=0$, or

$$
\begin{equation*}
\frac{x^{2}}{9^{2}}+\frac{y^{2}}{9^{2}}+\frac{z^{2}}{9^{2}}-1=0 \tag{1}
\end{equation*}
$$

(b) Letting $f=x^{2}+y^{2}+z^{2}-81$, we have $\nabla f=(2 x, 2 y, 2 z)$. At the given point \mathbf{r}_{1}, we have $\nabla f=(14,8,-8)$, so the equation for the tangent plane is $\left(\mathbf{r}-\mathbf{r}_{1}\right) \cdot(14,8,-8)=0$ so $14(x-7)+8(y-4)-8(z+4)=0$, or $7 x+4 y-4 z=81$.
(c) The normal line is $\mathbf{r}=\mathbf{r}_{1}+t(14,8,-8)$. Note choosing $t=-\frac{1}{2}$ gives $\mathbf{r}=\mathbf{0}$, as expected for the special case of a sphere where all normal lines go through the centre of the sphere. In this case our line can be simplified to $\mathbf{r}=u(7,4,-4)$ for any u, or eliminate u to get $y=\frac{4}{7} x, z=-\frac{4}{7} x$ or similar.
(d) This line is $\mathbf{r}=\mathbf{r}_{1}+t\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)$ for any real t. (Note, this is just a straight line through 2 given points, and doesn't depend on f or ∇f). This becomes $x=7-3 t, y=$ $4+3 t, z=-4+8 t$; if desired, we can rearrange the x equation to $t=(7-x) / 3$, and plug that into the y, z equations to get y and z in terms of x.

4. (*) Hand-in question:

(a) Calculate the volume of a parallelepiped (the 3D version of a parallelogram) where 3 edges are given by the vectors $2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ and $2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
(b) Find equations for the (i) tangent plane and (ii) normal line, to the surface $3 x^{2}-y^{2}+2 z^{2}=1$, at the point $P_{0}=(1,2,-1)$.

Answer: (a) Call the three given vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$. Then volume of the parallelepiped is the absolute value of $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$; evaluating, we get $\mathbf{b} \times \mathbf{c}=1 \mathbf{i}-5 \mathbf{j}-3 \mathbf{k}$, and so the scalar triple product is 15 .
(b) Remember that for ANY surface $f(x, y, z)=c$, for c any constant, the tangent plane and normal line at a point are respectively perpendicular and parallel to ∇f at that point (as long as $\nabla f \neq 0$ at the point). For the given function we get $\nabla f=$ $(6 x,-2 y, 4 z)$, so at the given point $\nabla f=(6,-4,-4)$. Hence the tangent plane is $\left(\mathbf{r}-\mathbf{P}_{0}\right) \cdot(6,-4,-4)=0$, or writing out components, $6(x-1)-4(y-2)-4(z+1)=0$. This simplifies to $3 x-2 y-2 z=1$.
The normal line is $\mathbf{r}=\mathbf{P}_{0}+t(\nabla f)_{P_{0}}$, for any t, so $\mathbf{r}=(1,2,-1)+t(6,-4,-4)$, or $x=1+6 t, y=2-4 t, z=-1-4 t$. If we want y, z in terms of x, rearrange the x equation to $t=(x-1) / 6$, and get $y=\frac{8}{3}-\frac{2}{3} x$ and $z=-\frac{1}{3}-\frac{2}{3} x$.
5. Find the directional derivative of the scalar field $V=4 y^{2} z+x y z^{2}$ in the direction of the vector $(2,-1,-1)$ at the point $P=(1,-2,-1)$. [Hint: write down the unit vector \mathbf{n} which has the same direction as the given vector, and evaluate $\mathbf{n} \cdot \nabla V$ at the point P.]

Answer:

From definition of grad, we have $\nabla V=\left(0+y z^{2}, 8 y z+x z^{2}, 4 y^{2}+2 x y z\right)$. At point P, this is $(-2,17,20)$. Our given vector is $(2,-1,-1)$ so the unit vector parallel to this is $\mathbf{n}=(2,-1,-1) / \sqrt{6}$. Hence at P , the directional derivative is $\mathbf{n} \cdot \nabla V=-41 / \sqrt{6}$.
6. Prove that $\nabla\left(r^{n}\right)=n r^{n-2} \mathbf{r}$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is the usual position vector and $r=|\mathbf{r}|=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$.

Answer

To find the gradient we need $\partial\left(r^{n}\right) / \partial x$ and so on, so we need the chain rule. First, we have $r=\sqrt{x^{2}+y^{2}+z^{2}}$ so $\frac{\partial r}{\partial x}=\frac{2 x}{2 \sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r}$. Then, by the chain rule, for $f=r^{n}$,

$$
\frac{\partial f}{\partial x}=n r^{n-1} \frac{\partial r}{\partial x}=n r^{n-2} x
$$

The results for y and z are similar, so we get

$$
\begin{aligned}
\nabla f & =n r^{n-2} x \mathbf{i}+n r^{n-2} y \mathbf{j}+n r^{n-2} z \mathbf{k} \\
& =n r^{n-2}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \\
& =n r^{n-2} \mathbf{r}
\end{aligned}
$$

(Note it can also be done from $r^{n}=\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}$, and the chain rule on that).
The answer can also be written as $n r^{n-1} \hat{\mathbf{r}}$, where $\hat{\mathbf{r}}$ is the unit vector parallel to \mathbf{r} and $\mathbf{r} \equiv r \hat{\mathbf{r}}$.
(Hint: remember this formula, it is likely to come up again in later parts of the course).

