Design of a Thermal/Fluid/Control System

L INTRODUCTION & CONCEPTS

The wide use of thermal/fluid systems in a variety of applications has made them invaluable to
many engineering disciplines. Their unique, flowing, and non-linear nature has caused scientists to
both characterize and control them by means of systems of differential equations. Through the case
study of a warming bed, this project will focus first on simulating and observing a steady-state heat-
transfer system and the interrelation of its variables, and second on the control of that system through
proportional control and “on/off” control methods.

In a steady-state system, conditions of objects subject to the system do not change. Specifically for
the warming bed, any heat provided by the bed is lost by the patient. By examining one small heating
element from the bed, the following energy-balance equation is developed:
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Equation I can be separated and integrated, resulting in an equation for T(x):
P
T(x)=T,+(T, —T,)e ™ ()
Furthermore, the heat transfer from the bed to the patient is given as:
é = ’Ewcw (Tm - T(u ) (3)
while the heat lost by the patient to the surroundings (due to convection and radiation) is:
O =hy AT, ~T,)+& (T} =Ty ) @

The second half of the project focuses on time-dependent analysis and feedback control: systems
whose behavior and status is dependent on time and whose control is based as a response to the
system’s performance. At the foundation of these systems is Equation 5:
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From this equation and the average of Tin and Tout, Equation 6 can easily be derived for later use:
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Two control methods are employed in the second phase of this project. The first is proportional
control, in which the initial water temperature is increased or decreased, based upon how great a
temperature difference exists between the average water temperature and a user-defined target
temperature. The change in initial temperature is directly proportional to that error, as is illustrated in
the following equation:

T,()=K,(T,-T,) (7)
The second method, “on/off” control, focuses on the extremes of desired performance. The initial
water temperature has two settings: the low or “off” setting and the high or “on” setting. When the

average temperature becomes higher than desired, the initial temperature is set to the “off” setting.
When the average temperature drops too low, the initial temperature is increased to the “on” setting.

€: Emissivity m,,: Mass flow rate T, Air temperature

o: Stefan-Boltzmann P’ Equivalent channel width Tou: Out-going temperature
cw: Specific heat of water Q: Total heat rate Tp: Patient temperature

ha: Water-skin heat transfer coef R: Thermal resistance T,: Water temperature

hg: Skin-air heat transfer coef T: Time Twan: Room temperature
Kp: Proportionality constant Tg4: Target temperature x: Distance

M,,: Total mass Tiy: Initial Temperature

Il PROBLEM STATEMENT & RESULTS



Part I: Steady-State Simulation

The first half of this project simulated the heat transfer of a hypothermia bed using a steady-state
simulation, a scenario in which all heat transferred to the patient is in turn transferred to the
environment through convection and radiation. First, a 3D-plot of the mass velocity and initial

temperature vs. change in temperature
was programmed. The resulting
Figure 1 shows how AT increases
linearly with m, and exponentially
with T;,. From the figure, values for
m, and T;, can be estimated at 0.02
kg/s and 40°C, respectively.

A plot of Ty, vs. position was then
made using a simple Euler
progression and Equation 1. This plot
is shown in Figure 2. From this
method, the temperature of water
leaving the system is found to be
313.5K.

The mean temperature of the water
was found using the equation
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where T(x) is from FEquation 2.
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Evaluating this integral from L=0 to L=2m, T, is found to be 314.85 K.
The heat transfer rate was calculated directly from Equation 3. Here, T, was determined using the
Euler’s method employed in plotting T vs. position. The resulting MATLAB script produced an output

0f302.72 J/s.

Figure 2: Position vs. Temperature
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The steady-state quality of this
simulation is due to the equal transfer of
heat from the bed to the patient and from
the patient to the surroundings through
convection, conduction, and radiation.
Thus, Equation 3 can be set equal to
Equation 4, resulting in a fourth-degree
equation for the surrounding temperature.
Using the “roots” command, MATLAB
was used to solve this resulting
polynomial, producing one real solution of
296 K. (See Appendix A)

Finally, with a T, of 42°C, m, is to be
determined in order to maintain the patient
at 37°C. By substituting Equation 2 into
Equation 3, and maintaining the
previously found value of Q, a plot of m,
vs. AT is made. From this plot, the value

of m, is estimated as 0.0337 kg/s. Evaluating Equation 3 for this m,, the corresponding T;, is calculated to

be 313.85 K (See Appendix A)

Part Il: Time-Dependent Control

The time-dependent control portion of this project dealt extensively with basic, first-order differential
equations. The first problem asked that, for a given initial temperature T,,(0)=39.5°C and T;=40°C, the
steady state value of T, be determined. Equation 6 was solved through separation and integration, resulting

in the following equation of T(t):



A, +H, { T
+B
Applying this equation to an array of T;, and
plotting vs. t results in Figure 3. From this chart,
Ty can be seen to approach 311.5 K
asymptotically, making this value the steady
state value of T,. The time constant, T, can be
determined from the exponential component of

Equation 9. Since

o !T = oD

then =1/(A+B).

The second portion dealt with a proportional
control system, asking for a proportionality
constant, Kp, for a system with time constant
7/10 and target value T4=38.5°C. Substituting
Equation 7 for Tin in Equation 9, separating the

T, ()=

(8)

variables, and integrating as before, the
following solution for T,(t) results:
XK T, +H
B (2) = —pd T P T,
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Figure 3: Time vs Temperature
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Setting 1, from the previous portion equal to the new t,, Kp can be calculated as 17.999. (See Appendix B)
It should also be noted that as t approaches infinity, the second half of the sum in T(t) approaches zero and
thus T,,(t) approaches 295.8495 K. For this reason, T, will not reach T4 under the specified conditions.

The final portion of the time-dependent control phase employed an “on/off” control system. Here, if T,

Figure 4: On/Of Control System
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CONCLUSION

dropped below 38.25°C, T;, was switched to
42°C, while if T,, rose above 38.75°C, T;,
switched to 34C. This function was coded in
MATLAB using a series of “if” statements,
as well as Euler’s method. (See Appendix B)
The resulting oscillating plot is shown in
Figure 4. From this plot, the number of
oscillations (i.e., number of peaks or troughs
in the wave pattern) may be simply counted
over a measured length of time, resulting in
the frequency of oscillation of Ty. In this
graph, thirteen oscillations occurred over a
10 second interval, illustrating the function’s
frequency to be 1.3 Hz.

Through this project, the nature of fluid/thermal systems has become apparent and their association
with differential equations made obvious. In addition, several methods for controlling these fluid
systems: proportional control and on/off control, have been investigated. Tying all these concepts
together was their interrelated use in a real-life application, namely a hypothermia bed.

APPENDIX A:



SELECTED STEADY-STATE PROBLEM CODES

clear

Tp=310; Y%Temperature of person (C)

P=0.12; %Total width (m)

hA =260; %Water-Skin heat transfer coeffecient (W/m”2*K)
hB = 6; %Skin-Air heat transfer coefficient (W/m"2*K)

cw = 4180; %Specific heat of water (J/kg*K)

epsilon =0.95;  %Emissivity

sigma = 5.67E-8; %Stefan-Boltzmann constant (W/m"2*K"4)
e=2.71828; %Natural base

mw = 0.02411; %Mass flow rate (kg/s)

Tin =316.5; %Flow in temperature (K)

L=2; %Length of pipe (m)

=1, %lnitialize counter

x(1)=0; %Set initial position (m)
Told(1)=Tin; %Set initial temperature (K)

dx =.01; %Set change in position

A=1.38; %Surface are of heat transfer (m”"2)

while x(i) <=2.01
dtdx=(-(hA*P)/(mw*cw))*(Told(i)-Tp); %Calculate change temperature/change position
Tnew(i) = Told(i) + dtdx*dx; %Calculate temperature after position change
Told(i+1)=Tnew(i); %Set final temperature equal to initial temperature of next stage
x(i+1)=x(1)+dx; %Phase shift position
1=i+1; %Increase counter

end

Q = (mw*cw*(Tin-Told(i))) %Total heat rate (J/s)

C = [-epsilon*sigma*A 0 0 -hB*A epsilon*sigma*A*(Tp*4)+hB*A*Tp-Q] %Create polynomial

matrix

roots(C) %Find zeros of polynomial matrix

for mw=(.001:.00001:.1)
F@G)= (mw*cw*(Tin-(Tp+(Tin-Tp)*e. ((((-hA*P)/(mw*cw)))*2))))-Q); %Write to heat rate matrix

p(i)=mw; %Write to mw matrix
i=i+1; %lIncrease counter
end
plot(p,F) %Plot
xlabel('mw (kg/s)');
ylabel('Delta T (K)");
axis([.03 .035 -5 5])
grid on
mw=0.0337 %mw determined by inspection

Tout = Tp + (Tin-Tp)*e.N((-2*hA*P)/(mw*cw)) %Calculate corresponding Tout
APPENDIX B:
SELECTED TIME-DEPENDENT PROBLEM CODES

clear
Tp=310; %Temperature of person (K)
L=2; %Length of Bed (m)

cw=4180; %Specific heat of water (J/kg*K)
mw=0.4785;  %Mass flow rate (kg/s)
Mw=2; %Total mass (kg)



R=2.5¢e-4; %Thermal resistance
T0=312.5; Y%Initial temperature (K)
Tin=313; Y%Initial temperature (K)
Td=311.5; Y%Target temperature (K)
e=2.71828; %Natural base

=1, %lnitialize counter
A=2*mw/Mw;  %Calculate A

B=1/(Mw*cw*R); %Calculate B
Kp=(9*A + 9*B)/A  %Calculate proportionality factor
for t=[1:.1:20]
Tw(i)=(A*Kp*Td+B*Tp)/(A+A*Kp+B) +
(A+A*Kp+B)*t);
ti(i)=t;
i=i+l1;
end
plot(ti, Tw)
grid on

(TO-(A*Kp*Td+B*Td)/(A+A*Kp+B))*e. (-

for t=[0:.01:10]
dTw(i) = (-A*(Tw(i)-Tin)-B*(Tw(i)-Tp))*dt;
Tw(i+1)= Tw(i) + dTw(i);
if Tw(i)>=311.75
Tin=TL;
ti(i+1)=ti(i)+dt;
i=itl;
elseif Tw(i)<=311.25
Tin=TU,
ti(i+1)=ti(i)+dt;
i=itl;
else
Tin=Tin;
ti(i+1)=ti(i)+dt;
i=itl;
end
end
plot(ti, Tw)



