DMC problem statement

System Design Report

1. Preface
When the DMC problem statement, hit the INCOSE-discuss list I was underwhelmed. The problem seemed not to be a system engineering challenge at all, unless one considers a system to be a board with THREE chips in it. Hardly the problem of which 777's are made. So I took a small envelope and proceeded to jot a diagram on the back of it just for Terry's amusement. That task was completed in about an hour but "reflection in action" [Schon] turned it into quite a mind opener. Yes, the DMC problem is simple and contains some unreasonable, unnecessary or unrealistic aspects but if we can't cope with the little, tightly constrained, and seemingly inconsistent problem how can we hope to solve the bigger ones? After all, a pool table with three balls on it is a systems problem and, as John Warfield has pointed out, any system with three or more entities quite likely has a more robust behavior than can be comprehended by any one designer without appropriate memory and analysis aids.

Accordingly, I decided to respond with more than just the "solution sketch." Also, I was motivated to show that the baroque decor of some of the 11 solutions seemed to be more due to the "hierarchical decompostion" glasses worn by the designer than to the inherent nature of the DMC problem statement.
2.

3. Introduction
The design material herein was prepared by the Complex, Adaptive System Method, CASM, -- but not quite -- because the CASM method emphasizes the benefits of "multiple minds in dialog" on each issue or problem whereas this response was prepared by the author, alone. Accordingly, the design materials may fall short of what would have been produced by two or more practitioners working together.

This material was prepared in the interest of clarifying the similarities and differences with respect to other methods that are currently used for engineering systems. Although CASM is intended to be used on very large, ill defined problems it is also intended to be self-adapting to the nature of the problem. Accordingly, CASM should be able to produce a satisfactory solution to the DMC problem with zero unnecessary activities or work products.

This response is limited to the systems design materials. It does not represent the design of the components. Rather, it represents the system to the detail of identifying the physical architecture and its components and leaves design latitude open for component-level engineers. Importantly, it also identifies some systems-level issues and solicits component designer input before converging on the final system design.

In response to the demand, "Design a controller for this traffic-light system." this report presents the evolution of the design materials as well as the target deliverable, the controller design materials. The evoluton views will give the reviewer some insight into the method. If the reader is interested in reviewing the design, first, and the method later, please see pages 14 and 10.

In reviewing this material please keep in mind that although the communication medium we are hereby employing requires that material be presented sequentially, this sequence is only generally indicative of the sequence of the actual design decision making activities and underlying thought processes.

An accompanying Exhibit, not part of the System Design Report, presents an overview of the CASM method in summary form. Details are proprietary at this time but may be published as early as 1999. My apology in advance to the many engineers who will be frustrated by the lack of specificity regarding semantics, symbology and notation. Arguments regarding "which end of the line should have the arrowhead" are not pertinent at this time. In fact, the CASM authors are still considering the question; "what level of ambiguity in the design materials language may be the most beneficial in terms of ensuring that human beings actually converse about the design materials?"

I believe that the act, or event, of learning is preceeded both by mistakes and by feedback from associates who care enough to be actively honest. Accordingly, your critique will be greatly appreciated.
4. Report Organization
Section 1) A description of the system design. This includes predictions of cost, reliability, safety and other factors which were not specifically requested in the DMC problem statement but which are felt to be a requisite part of a systems-level design materials.

Section 2) Notes to the design validation agent regarding the system design.

Section 3) Notes to the method comparison agent regarding some nuances of the method.

Section 4) Notes to the design and implementation phase Project Manager(s) regarding recommended steps for

a) confirming the design with the Sponsor,

b) confirming that the component-level engineers understand the design materials and the underlying technology assumptions and

c) collaborating with them to improve and refine the design and its allocation to components. Also,

d) confirming that the (presumed) validation and verification engineers understand the design and the underlying technology assumptions.

These PM notes were not specifically requested in the DMC problem statement but likewise are felt to be a requisite part of systems-level design materials.

Section 5) Comments about the other methods used to design the Traffic Light Controller.
Section 1: Description of the system design

5. Model of User World
There is an intersection between a seldom-used farmroad and a busy highway. A farmer has difficulty getting across the highway, so we are to install a traffic-light system. Design a controller for this traffic-light system.

Normally, the highway light shall be green and the farmroad light shall be red. When a sensor signals that a tractor is on the farmroad, the highway light shall change to yellow. After a short-time interval (STI, nominally 10 seconds) the highway light shall change to red and the farmroad light shall change to green. The farmroad light shall stay green until the tractor clears the sensor or after a long-time interval (LTI, nominally 50 seconds), whichever comes first. Then the farmroad light shall become yellow. After a short time interval the farmroad light shall become red and the highway light shall become green. The system shall stay in that state for a least a long time interval. After a long time interval the highway light shall be switched when the sensor detects a tractor. A timer that produces output signals after short time intervals and long time intervals will be available. It can be restarted at anytime. [1]
1. User World -- Ontology Representation
The ontology of the User World as revealed in the Problem Statement is shown in Figure 1. This represents the designer's understanding of the problem space. The absence of gaps and dead ends in the ontological map indicates a rather well formed problem situation description. Note that of the many relationship types that might exist between elements, only the key relationships are shown. Confirmation by the Sponsor regarding the accuracy and sufficiency of this representation is pending. Meanwhile, this forms part of the baseline for Imagineering.
4.2.2. Operations Orchestration
1. System primary state is HWYL = G (FRL = R).

2. When sensor indicates tractor present and until the HWYL has been Green at least a LTI, the HWYL will transition to Yellow.

3. After a STI the HWYL transitions from Y to R.

4. When HWYL transitions to R then the FRL changes to G (transition assumed to be a Very Short Time Interval, nominally less than 0.1 second).

5. After LTI, or sooner if a tractor clear signal is received, the FRL will transition to Y

6. After a STI the FRL will transition to Red.

7. When FRL transitions to R, then the HWYL changes to G (transition assumed to be a Very Short Time Interval, nominally less than 0.1 second).
4.2.3. Configuration Change Orchestration
None stated.
4.2.4. Restrictions and Reservations of Authority
None stated.
6. Problem Space Model and Problem Intervention Strategy

1. Imagineering

1. ConOps Model (Concept of Operations)
Normally, the highway light shall be green and the farm road light shall be red. When a sensor signals that a tractor is on the farm road, the highway light shall change to yellow. After a short-time interval (STI, nominally 10 seconds) the highway light shall change to red and the farm road light shall change to green. The farm road light shall stay green until the tractor clears the sensor or after a long-time interval (LTI, nominally 50 seconds), whichever comes first. Then the farm road light shall become yellow. After a short time interval the farm road light shall become red and the highway light shall become green. The system shall stay in that state for a least a long time interval. After a long time interval the highway light shall be switched when the sensor detects a tractor. A timer that produces output signals after short time intervals and long time intervals will be available. It can be restarted at anytime.
6.2. System Representation Model-1
The key elements and relationships for the envisioned Traffic Light Controller, TLC, are shown in Fig. 2, System Representation Model-1.
3. System Ontology

7.2. Agile Systems Design
Ref: http://www.parshift.com
7.2.1. Framework (Cohesion):
1. Time Base:

Alternatives: Message driven vs. Clock-cycle driven

Conclusions: A message-driven. Each message may contain time stamp. Rule arguments may refer to time stamp or the state of system variables (e.g. if FRL=Green).

Issues: Message driven will require time stamps in each message. May be too much for subroutine and bus bandwidth.
7.2.2. Partitioning:
1. Quantization:

Alternatives: Shall time be reset periodically so that time stamp can be fewer bits and subroutine use fewer execution cycles.

Conclusions: Reset timer each December 25 at 11:59:59.99.

Issues: Is there a more likely time when there will be no one out on a tractor?

2. LRU

Alternatives: All as one unit or separate microprocessor from control interface chip.

Conclusions: All as one unit. Whatever would endanger one would likely disable the other so both would have to be replaced if they were separate. Protection from lightning and other electrical disturbance is easier in one enclosure.

Issues: None.

3. Abstractions:

Alternatives: Classes per this Representation. Or include classes of higher abstraction for ease of later adaptation of the system or for staging reuse to other projects.

Conclusions: The Tractor Representation Object should be a subclass of Farmroad Vehicle Representation Object in order to provide for the inclusion of other types of sensors. Alternatively, consider using the interface associations construct in JAVA to associate sensor to vehicle.

Issues: None.
7.2.3. ReUse
1. Available assets: Time of day routine for microprocessor. JAVA libraries.

1. Designing for future reuse of assets: (N/A)
7.3. System Value Options:
Several suggestions are made in this material for improving the value of the system with none to minor increase in cost.
7.4. System Ontology Update
TBS

1. Engineering

1. Architecture - Functional

Time Base (see previous)

Sensor representation

Alternatives: Sensor object. Sensor signal object. Sensor signal as state variable in Tractor Representation Object, TRO.

Conclusion: Associate sensor signal to TRO because Sensor, per se, has no role and there is no indication in the Problem Statement that the sensor output represents anything but tractor.
2. Architecture - Physical
(see next figure)
· TLC components

· Lightning protection

· Controller parsed into control unit and a light switching unit because the latter is CFE with the light.

· TLC interface to COTS sensor and Light Switching unit.

· Microprocessor system (including systems and model software)

· Highway signage: Traffic Control Signal Ahead.
1. Components Representations.

8.4. Operations

8.4.1. RMA
Based on expected part count, complexity and the technologies the initial estimate of MTBF for the Traffic Light Controller is 35,000 to 70,000 hours. This is expected to be longer than the lamp replacement schedule for the traffic light. Detection of Traffic Light Controller malfunction can be positively made with the test unit that can be made available. Maintenance is expected to consist of removing and replacing a single unit weighing less than ten pounds.
8.4.2. Other
None.
8.5. Cost
The total cost of ownership of a production unit is expected to be less than $10,000.00 for a period of five years of operation.
8.6. Flexibility for operational change
Other than physical dimensions and electrical interfaces with the sensor and the traffic light switching unit, the controller functions, features and characteristics are programmable in software. Further, the current set of capabilities are expected to consume less than 15% of the microprocessor capacity. Accordingly, a variety of changes can be accommodated in the future.
8.7. Adaptability during project
The design method proposed for the further development and production of the Traffic Controller anticipates and accommodates change. Adaptations to needs and choices made later in the project life can be accommodated with none to minimal impact on cost and schedule.
8.8. Acceptance criteria
The Objective Function should be used as the Acceptance Criteria.

Acceptance of the system should occur when the system has been sufficiently exercised to demonstrate its behaviors and there are no resulting discrepancy reports unresolved.
Section 2: Notes regarding the system design
1. The system desing will work with either a message-driven architecture or a Clock-driven architecture. The choice of which to use is dependent on the technical, cost and risk considerations.

2. The TLC is not a state-determined system. The TLC has been partitioned to isolate the state-determined parts where possible in order to simplify the design. Specifically, isolating the traffic light transition model from the other variables and rules is important.

3. The microprocessor risk assessment is valid only if a COTS unit, with its native control program are used. There may be a desire to replace CP functions with JAVA-based collaborators. While feasible and an interesting technical endeavor, it would not be consistent with the system design choices made herein.

4. The utility of the Tractor Across feature should be reconsidered. This may be a cause of frequent erroneous sensor output while saving only a few seconds each light cycle. Deletion would simplify the system.

5. We strongly recommend having a discussion regarding making the system capable of documenting operational characteristics. Candidates are Mean Time to Tractor Present, Seconds saved by Tractor Across signal, and counts of tractor not waiting for FRL = G.

6. The sensor is associated with the Tractor Representation Object because it is the means of detecting that the tractor wants access to the intersection.

7. A roadside button or other methods of announcing demand for access to the intersection would be useful, as well, in case the sensor is faulty or some vehicle or person is on the farm road and not sensed.

8. Component logic should be "ceteris paribus" (double negative) in order to make the sequence of rules irrelevant (non-procedural).

9. Consider lightning arrestors.
Section 3: Notes regarding the CASMethod
1. 1. The method purposefully looks past the "requirements" to determine the Problem System and the Problem Intervention strategy or specification that is being promulgated by the Sponsor. In all cases the method seeks a Problem System-Problem Control System approach and re-frames the original requirements statement toward this end.

2. The useful system archetypes are Stimulus-Response and a focus on resources managed rather than functions performed.

3. The benefits are believed to be significant. The pitfalls can be significant, as well. The primary pitfall to be avoided is the inadvertent restructuring of the Sponsor's intent or intervention strategy. In some cases a purposeful, mutually agreed restructuring can be a positive step but an inadvertent restructuring is rarely a lucky stroke. In this DMC case the restating of the rules from the original problem statement to the Resource Allocation Representation and then to the Engineering expression is a possible pitfall. The validity of these rules merits diligent confirmation.
Section 4: Notes to Project Management
1. confirming the design with the Sponsor
These design materials are ready for review with the Sponsor. Note the several issues and suggestions that need to be addressed. Prior to completing Sponsor review, it is prudent to have an initial round of review and comment with the lead developers.

It will be prudent to gain a better understanding of the operational characteristics of the sensor. Each sensor output will be an inseparable mixture of "Truth + Type 1 error + Type 2 error" and it is important to assess the likelihood of the error. For example, sensor behavior in situations of Rain, two tractors in opposite directions, etc. would be important to understand.
2. confirming that the component-level engineers understand the design materials and the underlying technology assumptions and collaborating with them to bring forth their ideas for improving and refining the design, its allocation to components, and acceptance criteria.
After the Sponsor review it will then be pertinent to confirm that the design materials are understood by the developers, fully consider their alternatives and recommendations and jointly converge on a Systems Design Baseline.

The key issue to be resolved with the component engineers is the Message-driven vs. Clock-driven method of system cohesion and integrity. Simulations and analyses will be required in order to arrive at a choice with the level of confidence you will want for this project.
3. confirming that the (presumed) validation and verification engineers understand the design and the underlying technology assumptions.
It will be necessary to develop a test driver unit that simulates the Sensor output and the Light Switching Unit inputs. This driver should be able to simulate the arrival of tractors in random time intervals from 0.1 sec to twice the time interval selected by the choice of LTI multiples in the intersection sharing rule.

The test unit should be proposed to the sponsor as the operational phase system status testing device.
Section 5) Comments about methods used on the DMC example
1. It is noted that the Problem Statement demands an activity, "Design" rather than for a deliverable such as "Design Report." Essentially calls for personal services rather than intellectual property. Note that most of the other authors took the direction literally and proceeded to design a controller. It is not obvious that any "took a step back" to look at the problem context.

1. Compare the resulting designs in terms of implementation risk, system reliability, Total Cost of Ownership and other such factors that will be important to a sponsor. None of the methods made much mention of these important outputs from a systems-level engineering activity.

2. Regarding implementation risk, the methods should be compared in terms of the how well the solution is represented/communicated in the design materials. This is because "specialty" engineers will have to design and develop the components called out in the design materials and I think it is important that the materials communicate with such engineers and encourage their creativity in nominating systems-level as well as component-level solutions.
Exhibit -- Overview of the CASMethod
An overview of the CASMethod is shown in the accompanying figure. The method is outlined in the box in the center of the figure. The method consists of a framework and several "plug-in" modules. The Stimulus on the method is shown on the left - the Sponsor's Needs, Trends and Tolerance for Ramifications. The Response of the method is shown on the right - the Design Materials, accompanied by Sponsor Visibility in the interim and by Learning on the part of all involved. Any two of the three are insufficient.

The method framework envisions the "systems engineering activity" or the "engineering of systems" as a Knowledge Utilization and Production, KUPD, process [Boulding]. It sets the stage for the ensuing dialog among minds. The first plug-in module focuses on the Problem Space and seeks to discern the system at work in that space [Richardson]. Importantly, we are careful not to confuse real world entity with its name (representation) [Korsybski] as too many software practitioners seem to do. Another module analyzes why the Problem Space exhibits unacceptable behaviors and ideates intervention schemes and scenarios that can suppress or mitigate the problem(s). This includes anticipating the problems that will be caused by the intervention system and the resultant problems that may arise when the original problem is successfully suppressed [Livingston]. These anticipatory ideas are factored back into the KUPD process in order to help increase the likelihood that the solution system eventually produced will be capable not only of suppressing the original problem but also of suppressing the collateral problems.

A trio of modules then go to work on the solution system - Imagineering, Optioneering and Engineering. The idea here is to avoid presumptions and conduct a robust discovery process for a near optimal solution, then to purposefully create the engine that can suppress the problem.

Another module emphasizes a co-learning process for two reasons. One is ensure that others who are requisite to designing and developing the solution are fully aware and appreciative of the system representation to date. The other, and more important, is to solicit the best thinking of these experts in their respective fields regarding the original problem and the conclusions to date in order to ensure the best possible baseline for going forward. Another module puts its energy into confirming that what is being created actually responds to the problem.

The last module is concerned with characterization of the solution system and the process by which it was produced. It validates or refines models by collecting and analyzing actual data regarding the actual stimulii and response behaviors of the solution system in operation and of the "project system" that created it. These characterizations are key to adapting the solution to its real problem environment and to helping the its constituency adapt to the system. They also represent the major artifacts of learning and enrich the knowledge base for the next project.

The method is informed (at the top) by four major guidelines. One is system archetypes and principles. Others are the principles for agile systems design and considerations of the change proficiency style (http://parshift.com) of those who will be affected by the solution system. Finally, the little known field of diakoptics pioneered by Gabriel Kron, GE, provides insight into the optimal partitioning of networks into a set of components. Minimization of complexity, communications, control and other measures is the forte of diakoptics.

Shown a the bottom of the box are the "resources" that turn the method into a productive activity. In a word, people. But also the principles and rules by which people collaborate while using their "brainpower" to overcome ambiguity, conflict, complexity and plain old hard problems. Basic Competencies in Engineering and Problem Domain are mandatory. The foundation for systems-level engineering is the Science of Generic Design [Warfield]. Then the people side of the equation demands that Learning and Interpersonal Collaboration Styles be acknowledged and applied. Even deeper is the departure from typical engineering dogma of Omniscience and Prescience to a new style of analysis and especially synthesis marked by Co-discovery and Collaboration. This is a different kind of collaboration from the interpersonal. It is a collaboration of knowledge production marked by due process in addressing all the key factors in the proper order. Model-based Systems Engineering [Wymore] is a primer in this regard. Finally, the method requires that the participants are adept at Design for Change, DfC [Burke]. Rarely anymore do we encounter problems that can be solved by a system that, once operational, can continue to operate without change. Designing for function, performance and even purpose must now be accompanied by designing for change. If the system cannot be easily changed the designer is doing the Sponsor a disservice by bringing it to reality in the first place. This leads to the field of emergent systems. Hopefully, the method is equal to the challenge.

It is important to note that the background in the figure is not neutral. It represents Resistance to Change of technical, cultural and political aspects of the situation being addressed. The resistance cannot be presumed to be visible but it is there at all times. Accordingly, the method is not only challenged with designing a solution system but with surviving long enough to do so. [Livingston].

Not shown is the evolving semantic network that integrates the ontology of the User World with that of the Solution System with that of the practitioners of the methodology for the instance of interest. It is the integration of structure and process at these three levels (and several others) that potentially gives CASMethod an edge.

So what's so new and radical about CASM? Not much. Most of this was evident in high school and college. Somehow, as the focus has been placed on the elements of the system of engineering systems, our cognizance of the small, but key, relationships has slipped away. CASM simply seeks to bring the picture back into focus.

