Declaration

We, hereby declare that this project neither as a whole
nor as a part there of has been copied out from any
source. It is further declared that we have developed this
project / thesis and the accompanied report entirely on
the basis of our personal efforts made under the sincere
guidance of our supervisor. No portion of the work
presented in this report has been submitted in the
support of any other degree or qualification of this or
any other University or Institute of learning, if found we
shall stand responsible.

Signature:
Naeem Akhtar

Signature:
Shirjeel Zafar

Signature:
Umair Ahmed

COMSATS INSTITUTE OF INFORMATION

TECHNOLOGY, ISLAMABAD
JuIn2008

Voice Encrygtion using RSA Algorithm

An Under Graduate thesis submitted to the

Department of
ELECTRICAL ENGINEERING

As a Partial Fulfillment for the award of Degree

Bachelor of Science in Computer Engineering

by

Name Registration Number
Naeem Akhtar CIT/FA04-BCE-027/ISB
Shirjeel Zafar CIIT/FA04-BCE-037/ISB
Umair Ahmed CIIT/FA04-BCE-047/ISB

Supervised by

Dr. Shahrukh Agha

Assistant Professor,
Department Of Electrical Engineering

CIIT Islamabad

Mahmood Pervaiz
GM Electronics,

Department Of Electrical Engineering

CIIT Islamabad

COMSATS INSTITUTE OF INFORMATION

TECHNOLOGY, ISLAMABAD
JuIn2008

Final Approval

This thesis Titled
Voice Encryption using RSA Algorithm

Submitted for the Degree of

Bachelor of Science in Computer Engineering

by
Name Registration Number
Naeem Akhtar CIT/FA04-BCE-027/ISB
Shirjeel Zafar CIIT/FA04-BCE-037/ISB
Umair Ahmed CIIT/FA04-BCE-047/ISB
has been approved for

COMSATS INSTITUTE OF INFORMATIONTECHNOLOGY
ISLAMABAD

Supervisor Supervisor
Dr. Shahrukh Agha Mahmood Pervaiz

Internal Examinerl
Col. Mushtag Ahmed

Internal Examiner?
M. Bilal Qasim

External Examiner
Muhammad Tahir

Head
Department of Electrical Engineering.

Dedication

This project has been consecrated to our beloved parents and elders, whose valued
bolstering, fiscal support and continued motivation impelled this project to triumph
over odd. This project is dedicated to our various mentors, without the principled
backup, perennial auspices and perpetual impetus of whom; this project may have

never reached its fate.

Acknowledgements

In the name of ALLAH, the most merciful and most beneficent.

With all due praise for the sovereign power of this universe, the Almighty ALLAH
who has helped us broaden the horizons of our knowledge, gave us strength to
produce this work and has furnished our mind with knowledge.

We are highly indebted to Dr Hassan Ahmed, HoD Electrical Engineering, CIIT
Islamabad, who provided us an opportunity to work for industry and see the facets of
practical life. We must thank Mr. Mumtaz A. Khan, Project Director, Margalla
Electronics, NESCOM who put his faith in us and provided us a chance to work on
this project along with his experienced team. Moreover, we also want to pay our
gratitude to Mr. Zulfigar Ali Bungash and Mr. Ali Arshad who have guided us during
the course of this project. Their valuable suggestions and discussions were a source of
motivation for us.

We are very grateful to Dr. Nazir A. Mir HoD Mathematics, CIIT Islamabad who
helped us interfacing Maple kernel in MATLAB. We also thank Mr. Riaz Hussain
and Mr. M. Aurangzeb Khan for their valuable time as an affectionate teacher and

providing us with necessary help regarding their fields of interest.

Finally we are much thankful to our supervisors Mr. Mehmood Pervez and Dr.
Shahrukh Agha, without their involvement and guidance this project has never been

done.

Naeem Akhtar
Shirjeel Zafar
Umair Ahmed

Table of Contents

1. What is Encryption? 1
1.1 Cryptography..... ..o 1
1.2 The Encryption Process..........cccoiiiiiiiiiiiiiiie 1
1.3 Types of Encryption ..o 2
1.3.1 Secret Key Encryption.........c.cooovviiiiiiiininiiiiiei e, 2
1.3.2 Public Key Encryption...........cccoviiiiiiiiiiiiniiiiene, 3
1.4 How does Encryption Work?..........ccooiiiiiiiis 4
1.5 Reliability of Encryption..........ccooooiiiiii 4
1.6 Drawbacks of Encryption ... 5
1.6.1 Bandwidth and Expenses Problems.................................0
1.6.2 Secret Key Encryption............coovviiiiiiiiiiiniiiiiii e, 6
T T <5 (o) 4)) P 6
2. Different Techniques of Encryption 7
2.1 Data Encryption Standard...............ccooiiii 7
2.1.1 Mathematical Preliminaries of Algorithm........................ 8
2.1.1.1 Generation of 16 Hexadecimal Keys..................... 8
2.1.1.2 Creation of SubKey..........covviiiiiiiiiiiiiiee 9
2.1.1.3 Encoding Message Blocks...............cccooviiiinn. 9
2.1.2 Mathematical Example...............ccoooiiiiiiiiiiiiin 10
2.2 Advanced Encryption Standard..........cccccoiiiiiiiiiinniinnen. 22
2.2.1 Algorithm Terms.........oouvieiniiiiitiiiee e e 22
2211 Input/ Output......cooiiniiiiee e 23
2202 BYE8S. ettt et 23
2213 Array of Bytes....oovviviiiiiiecece e 24
2214 StateS. .ottt 24
2.2.1.5 State as an ATTay......ccoevriiriineiiaeiieeneeneeeneannnn 25
2.2.2 Mathematical Preliminaries...............ccceveiiiiiiiinininn.n. 25
2221 AddRound Key......cocoovviiiiiiiiiii, 26
2222 BYte SUD. ..ttt 26
2223 Shift ROW...oniniiiiii e 27
2224 Mix Column.........ouivuiiiiiiiiiiii e 28

22241 Matrix Multiplication.................... 28
22242 Galois Field Multiplication............. 29

3. RSA Encryption 32
3.1 Mathematical Preliminaries of Algorithm........................ 33
B SteP L 33
TN | 1<) P 33
313 S P B 34
3.2 Mathematical Example.......cccceciiiiiiiiiiiiiiiiiiniiiiiinnnenn. 34
3.3 RSAasBlock Cipher......cccoiiiiiiiiiniiiiiiniiiiiinniiiiinninn 35
3.4 RSA as Stream Cipher.......cccceeiiiiiiiiiiiiiiiiiiiiiiiiiineicnn 36
4. Stream Ciphers 37
4.1 Introduction................... e e e 37
4.2 Classifications................ e e et eee e aaaiaae, 37
4.2.1 Synchronous Stream Ciphers............coiiiiiiiiiiiiis 38
4.2.2 Self synchronizing Stream Cipher................oooiiiiiini, 38
4.3 RC4 Stream Cipher......... et e e e e 39
4.3.1 Generation of Key Stream. ..o, 40
4.3.2 Implementation............cooouiii i 40
4.4 SEAL Stream Cipher....... e e et 40
441 Implementation............ccooiiiiiii 40
4.5 Conclusion.................... e e et eee e aaaiaae, 41
5. Design Implementation 41
5.1 Problems in RSA Encryption.............cooioiiiiii, 41
5.1.1 Key Generation............oooiiiiiiiiii e 42
5.1.2 Complex Calculations.cooiiiiiiii 42
5.1.3 Timing Constraints....... ..o 43
5.1.4 Deterministic Encryption Algorithm.......................one. .43
514 Padding.......c.oeiiiiii 43
5.2 Efficiency Methods.......... et e et e e 43
5.2.1 Modular Exponentiation Method...... ... 43
5.2.2 Exponentiation by Squaring.............ccoooiiiiiiiiii 45
5.3 Efficiency using FPGA...... et e e e et 46
5.3.1 Module Spreading.............oeiuiiiiiii 46
5.3.2 Pre Calculation.............ooeiiiii 47
5.3.3 Look Up Table Technique..............ccooiiiiiiiiii, 47
4.4 SEAL Stream Cipher....... e e et 40
441 Implementation............coooiiiiii 40
4.5 Conclusion.................... et e et eeeeeaaiiaae, 41
Appendix-A 60
Appendix-B 70

Appendix-C 79

Bibliography

81

List of Acronyms

DE S Data Encryption Standard

AR . Advanced Encryption Standard

RS A . Rivest, Shamir, and Adleman
FPGA....cceeeiee e eennnn 2 FiEld Programmable Gate Array
LESR. .o, Linear Feedback Shift Registers
SHA . Security Hash Algorithm
OF B e Output Feedback

L] 2 2 P Cipher Feedback
Y Ot Secure Socket Layer
WEP. .o Wireless Encryption Protocol
K A Key Scheduling Algorithm
PRGA.....coi Pseudo Random Generation Algorithm

SEAL. ..o Software Optimized Encryption Algorithm

1.1
1.2
1.3
1.4
1.5

2.1
22
23
24
25

List of Figures

ROC curves for two out of 40 SIgNErs.......ccoovvviviiiiiiiiiiiiieeeeneee, 1

L7 175 T) o VAT N pg#
L7 175 T) o VAP N pg#
L7 175 T) o VAP N pg#
L7 175 T) o VAP N pg#
L7 175 T) o VAP N pg#
L7 175 T) o VAP pg#
L7 175 T) o VAP N pg#
L7 17510) o VAR pg#

L7 175 T) o VAP N pg#

1.1
1.2
1.3
1.4
1.5

2.1
22
23
24
25

List of Tables

Equal Error Rates (EER) For 14 Signers............cocooviviiiiiiiiniinienn.. |

L7 175 T) o VAT N pg#
L7 175 T) o VAP N pg#
L7 175 T) o VAP N pg#
L7 175 T) o VAT N pg#
L7 175 T) o VAT N pg#
L7 175 T) o VAT pg#
L7 175 T) o VAP N pg#
L7 175 T) o VAN pg#

L7 175 T) o VAP N pg#

Abstract

Security has always been an issue in communication. Cryptography has been used for
this purpose since ages. With the advent of technology encryption schemes have been
continuously proposed and improved. But technology has also been helpful in
breaking these encryption schemes. Voice communication has its significance in
personal interaction but any breach in this may cause serious losses. There has been a
need to develop a new stronger technique which can be efficiently used for encrypting
voice signals. Given that almost all encryption techniques for voice have been
attacked overly and many of these attacks have been successful.

RSA encryption has always been considered as one of the strongest encryption
techniques however due to its complex calculations and timing constraints it has not
been used for the purpose of stream ciphers fully. But we can still see the use of RSA
encryption in majority of stream cipher techniques for the purpose of key exchange.

This report proposes a method of using RSA encryption for voice considering the
advent of technologies is now sufficient to carry out necessary operation within time
constraints. The report tells about the path followed and also future enhancements and
conclusive suggestions.

What is Encryption?

1.1 Cryptography

Cryptography is basically an art of practicing and hiding information from other
persons. It is the branch of Mathematics and Computer Science and in this age the

cryptography is know and referred to as a technique called Encryption.

1.2 The Encryption Process

Encryption is a process to convert the information into a form which is not understood
by every person. Only those people who have some additional information and

knowledge can understand the information.

The information or message that is transformed is called the plaintext, the method
used to transform the plaintext is called the encryption algorithm or cipher and the
final result is called the encrypted message or encoded message. It is also referred to
as cipher text. This encrypted message is not readable by every person. To make it
readable, an inverse process is used that is called Decryption. To decrypt the message,

one need the additional information and knowledge referred to as Key.

Encryption is used throughout the world to protect the data. The three main objectives

of the encryption are as follows.

Confidentiality
Authenticity
Integrity

e Confidentiality is the main objective of the encryption. It guarantees that only
the intended user is able to read the message and it is unreadable for all other

persons.

e Authenticity is the other prime objective of the encryption. It ensures that the
sender and receiver are the appropriate and authenticated persons to send and
receive the information and can understand it.

e Integrity is the third objective of the encryption and it guarantees that the
information has not been changed or modified or even viewed by any other

person other than the intended one during the routing.

So different encryption techniques are deployed by different people and countries to
encode their data and information and to protect it from other people no matter if their
details are present in a computer or it has to be routed over the network. Different
encryption tools are commonly available and are used to secure the stored data in the
form of single files in a computer, computer codes such as operating systems and
other software or programs, information sent over the internet which includes E mail
and internet telephony and communication systems including the state of the art

mobile systems and wireless systems.

1.3 Types of Encryption

e Symmetric / Secret Key Encryption
e Asymmetric / Public Key Encryption

1.3.1 Secret Key Encryption

Until 1970 all the encryption types were secret key or Symmetric. In these types,
anyone who is encrypting a message can work out to find the ways to decrypt it. The

main features of this technique are as follows.

e Only one key is used for both encryption and decryption.
o The sender and receiver must agree on the key before sending and receiving
data.

o No other person should know the private key.

e There is one key for one communicating party and the other for the other

communicating party.

This type had no problems if the communication is between some trusted people who
can share a secret key but if the communication is being done between lots of people
over, the internet then sharing a secret key was a real problem. So the need was to

evolve some other technique.

1.3.2 Public Key Encryption

The problem of sharing the key was solved by the advent of Public Key or
Asymmetric Encryption. In this type, two keys are used. One is the public key which
is visible to everyone and the other is private key. The information or message is
encrypted using the public key and then only the holder of the private key can decrypt
the message. Reversely if the information is encrypted using the private key then any
person who has the public key can decrypt and understand the original information.

The main features of this type are as follows.

Two different keys are used for encryption and decryption.

e Only one key pair is used between any numbers of communicating parties.

e Each communicating party has its own private key which s not visible to
anyone.

e Public key of every party is visible to anyone.

This type of encryption is more secure one than the earlier ones because in this type
the private key is not exchanged. The private key cannot be derived from the public
key so this type can be used in communication via internet where millions and
millions of people are communicating and transferring their data and information. But
it is very slow even if they are run on very high speed computers so the most modern

encryption techniques use the combination of both these types.

1.4 How does Encryption work?

Encryption takes the original message, applies some algorithm or cipher on it and

converts the message into encoded one which is called the cipher text.

Shajee ujclgg Shajec

Plain Text Encrypt Cipher Text Decrypt Plain Text

In the ancient times, the encryption was usually done on the letters of the alphabets
for example while encrypting the message, the each letter of the message is replaced
by the three places to the right of it in alphabets. This technique was known as Caesar
Cipher. But now in the modern age, the computers have taken the place of humans in
every field and they store the numbers in the form of binary sequences. So modern
algorithms or ciphers are basically mathematical functions that are appled on the
original message to encrypt them and it is stored in the forms of bits in the computers.
The keys are stored in the form of bits in the large databases and they are also

encrypted.

1.5 Reliability of Encryption

The strength of the encryption technique lies in the fact how easily and quickly it can
be broken. To break the encryption means to decrypt the message without having the
decrypting algorithm or the keys. There exist such techniques, if they are
implemented correctly then they are almost unbreakable but at the same time there are
such techniques which can be broken very easily and have been broken by some
people. Actually every encryption technique can be broken but the time to break it
really matters and is of great importance. The choice of the most appropriate

encryption technique depends on the following things.

e The type of the information which is to be secured.
e For how much time it is to be protected.
e Who are the people who can attempt to break?

o What kind of resources they might have.

Basically the security of the encrypted technique depends on the choice of the
algorithm used and the length of the key. For example if the information to be
encrypted is from the defense then we need a very strong algorithm and a very long
key making it impossible to break and on the other hand if the information is not very
much sensitive then the relatively short key and weak algorithm can be used. As the
computational power is increasing day by day and the weaknesses are identified by
the experts, new techniques and algorithms are being emerged. Since the algorithm
strength is described by the key length i.e. 56-bit, 64-bit, 128-bit etc. The more the
bits in the key, the harder is to break it because all the combinations of the keys will
have to be checked and it is called exhaustive key search. Breaking a 56-bit algorithm
by exhaustive key search may require a week’s time, two weeks for the algorithm
with 57-bits and four weeks for the algorithm having 58-bits. Now a day the
algorithm techniques use 512-bit, 1024-bit or even 2048-bit long keys and are almost

unbreakable.

1.6 Drawbacks of Encryption

The encryption is a very useful technique which is helping the people to protect their
data from the interceptors but the same time, it has some drawbacks as well. Some of

the drawbacks of the encryption are as follows.

1.6.1 Bandwidth and Expenses Problems

The biggest problem or drawback of encryption is the bandwidth problem,

which is the most expensive and valuable thing in communication. By

encrypting the message it requires more bandwidth to be transmitted on the
channel as there is more than original information in it. Therefore using
encryption in a communication process, not only means the security but also

it requires more bandwidth utilization and therefore results in high expenses.

1.6.2 Encryption and Criminality

Criminals can use encryption to secure their communication over the internet while
routing and can store it on the electronic devices in the encrypted form. So it can be
dangerous for the humanity. The police and the law enforcement agencies are using

the techniques to break the algorithms used by the criminals to encode their data.

1.6.3 Terrorism

Encryption can be used extensively in the terrorism activities. There are a number of
incidents showing the use of encryption in the terrorism activities. Sometimes the
police resources were found insufficient to break the algorithms being used by the

terrorist organizations.

Different Techniques of Encryption

Over the time different encryption techniques have been emerged and being used by
different people and organizations in order to protect their data and information. The
choice of the algorithm used depends on the sensitivity of the data and computational
power of the resources. Less sensitive data do not require very large keys and strong
algorithm while on the other hand the sensitive data require very strong algorithm and

very large key in order to make it unbreakable.

The computational power of the computers is increasing day by day and the scientists
and researchers are working day and nights to enhance and improve the encryption
algorithms, making them almost impossible to break. Even the new techniques are
being evolved if there found any loop hole in the previous ones or the previous ones
not meeting the new and upcoming technological advancements and usage scenarios.
There are several encryption techniques being used by individuals and organizations

around the globe. Some of them are as follows.
e Data Encryption standard (DES)

e Advanced Encryption Standard (AES)
e Rivest, Shamir, and Adleman (RSA)

2.1 Data Encryption Standard (DES)

Data Encryption Standard (DES) is an encryption technique developed by IBM in
1974 and was adopted as a National Standard in 1977. It is one of the types of Secret
Key Encryption or also termed as a technique of Symmetric Key Encryption and uses
a private key structure. It provides a complete mathematical algorithm for encrypting
and decrypting the binary coded information. Working and complete explanation of

this technique is described in the following paragraphs.

The private key used in this technique is of 64-bits. The 56-bits out of 64 are
randomly generated and used by the algorithm while the remaining 8-bits are for the
detection of the errors and they are not used by the algorithm. These 8 error bits are
used to make the parity of the 8-bit byte odd, means the total no of ‘1’s are odd in the
8-bit byte. The key is of prime importance in encrypting and decrypting the data and
the selection of the different key makes the cipher (encoded information) produced by
the given input message different from the other ones. At the receiver end the exactly
same key is required to decrypt the data. If the encoded data is received by some other
person other than the intended one then he cannot decrypt it unless he knows the same
key, mutually set by the sender and receiving person. The knowledge of the key is
must to get the original data back or to decode it 100% correctly. And a person having
the key can easily decrypt the information without having the knowledge of the
algorithm.

Now, we will explain the DES algorithm, with all the mathematical steps illustrated

with an example.

2.1.1Mathematical Preliminaries of the Algorithm:

DES algorithm has three main steps:

1. Generation of 16 digit hexadecimal key or 64 -bit binary
2. Creation of 16 sub keys each of which is 48 -bit long

3. Encode each 64-bit of message block of data

2.1.1.1. Generation of 16 hexadecimal key

As DES is a block cipher so the message to be encrypted, must be taken as chunks of
64-bit (16hexadecimal), say it K. The primary key of which further sub keys are
created is also selected as mutual communication, mean it would be the same for the

both ends, the sender and receiver.

Now this 64 bit key is minimized to 56 bit, by dropping the bits at index 8, 16, 24, 32,
40, 48, 56, 64 and in result got a permuted key. This is done through a permuted table
given along with the algorithm. Mapping the bits from this table the above mentioned
bits are automatically dropped as there are no above mentioned indexes in that table.

At this step a 64-bit key to 56-bit, call it K+.

2.1.1.2.Creation of 16 sub keys each of which is 48-bit

long

Now splitting the 56-bit key K, to two halves, E, and F, (each 28-bit long). The 16
sub keys are obtained through left shift of this pair X, and Y, like Xo - X1 and Y-
Yn—l.

We have 16 pairs X;Y1 - Xi6Y16. Now to reduce each pair from 56-bit to 48-bit, the
key pairs are passed through another permutation table called PC-2 and results in the

reduction of each sub key size to 48-bit.

2.1.1.3. Encode each 64-bit of Message (block of data)

This is the most important step of encrypting the message M. Re-arranging the 64-bit
message by getting values initial permutation IP. Then split the 64-bit message in two
halves each of 32-bit, like X,, Yo, We now proceed through iterations 1<n<16, using a
function f which operates on two blocks, a data block of 32-bit (X,, Y.) and 48-bit
key K.

Xn:Yn—l

Y nl1= Xn + f(Yn—l, KN)

To calculate f, we first expand each block Y,.; from 32-bit to 48-bit; through selection
table that repeats some of the bits Y,.; and gives 48-bit output of Y, call it E (Y,).
Now fwill XOR the output E (Y ,) with Ky but not finished yet, the result of XOR 48 -
bit eight groups of 6 bits. Each group of 6-bit gives the address of a location in a
different S-box. At which, a 4-bit number is located, it means that we in result have 8

groups of 4-bit numbers (from S-boxes).

Kn+ E (Yn1) = WiW2 W3 W WsWW,Wg,

\ J
Y

(48-bit)

For each S; (W) - - - Si (W) is a 6-bit number, first and last bit gives row ‘x’ and
centre 4-bit gives y-column in S — table and that index in the table will contain the 4-

bit number.

Now at this stage we have eight, 4-bit groups and finally calculating f is to perform

permutation p of S —box output to obtain the final value of ‘f".

£=P (S; (W1), S2(W2), S3(W3), Sa (W), S5 (Ws), Sis (We), S7(W-), Ss
(Ws))

This permutation Pp yields 32-bit output for 32-bit input. So on for the iterations
1<n<16, at the end of 16™ round we have the blocks XY 16. Now we reverse them,
mean swap the values of both halves. And after reversing combining the both which
will be Y16 X16 (64-bit) and after it final permutation to this Y6 Xie is P which in

hexadecimal will be the encrypted or call a cipher message.

2.1.2. Example by mathematical calculations:

Suppose M be the plain text message, M = 0123456789 ABCDEF, where M is in
hexadecimal (base 16) format. Rewriting M in binary format, we get the 64-bit block

of text:

M = 0110 0001 0011 0011 0110 0111 0110 1001 1000 1001 1110 1011 1111 0101
1110 1000

Let K be the hexadecimal key K = 1765GUKLOSNMDEFF1. This gives us as the
binary key (setting 2 = 0011, 7 = 1000, etc., and grouping together every eight bits,

and last bit of each is not used):

(13
pPC-1
57 49 41 33 25 17 9
10 2 59 51 43 35 27
19 11 3 60 52 44 36

63 55 47 39 31 23 15

14 6 61 53 45 37 29
21 13 5 28 20 12 4

2

From the original 64-bit key

K = 00011011 10011110 00000111 01001011 10001010 11011010 11110111
10110000 we get the 56-bit permutation

K+=11111000101011 0011001 0101001 0101010 0001001 1001001 011100

Next, split this key into left and right halves, Fy and Ej, where each half has 28 bits.

From the permuted key K+, we get the following

13

Ey=1111000011001100101010101111
Fy,=0101010101100110011110001111

Iteration Number of
Number Left Shifts
1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

From original pair Eg and Fy we obtain:

Ey=1111000011001100101010101111
F,=0101010101100110011110001111

E;=1110000110011001010101011111
F;=1010101011001100111100011110

E,=1100001100110010101010111111
F,=0101010110011001111000111101

E; =0000110011001010101011111111
F;=0101011001100111100011110101

E,=0011001100101010101111111100
F,=0101100110011110001111010101

Es=1100110010101010111111110000
Fs=0110011001111000111101010101

Eq=0011001010101011111111000011
Fs=1001100111100011110101010101

E;=1100101010101111111100001100
F>;=0110011110001111010101010110

Eg=0010101010111111110000110011
Fg=1001111000111101010101011001

Ey=0101010101111111100001100110
Fy=0011110001111010101010110011

E;p=0101010111111110000110011001
Fi9=1111000111101010101011001100

E;; =0101011111111000011001100101
F;; =1100011110101010101100110011

E;;=0101111111100001100110010101
Fi;=0001111010101010110011001111

E;3=0111111110000110011001010101
Fi3=0111101010101011001100111100

E;,=1111111000011001100101010101
Fp,=11101010101011001 10011110001

E;s =1111100001100110010101010111
F;5=1010101010110011001111000111

E;s=1111000011001100101010101111
Fi16=0101010101100110011110001111

2

We now form the keys Ky, for 1<=n<=16, by applying the following permutation

table to each of the concatenated pairs E,F,. Each pair has 56 bits, but PC-2 only uses

48 of these.

13

14

3
23
16
41
30
44
46

17
28
19

52
40
49
42

11
15
12
27
31
51
39
50

pCc-2

24

6

4
20
37
45
56
36

1
21
26
13
47
33
34
29

Therefore, the first bit of Ky is the 14th bit of E,F,, the second bit the 17th, and so on,
ending with the 48th bit of Ky being the 32nd bit of E,F,.

This, after we apply the permutation PC-2, becomes

K; = 000110 110000001011 101111 111111000111 000001 110010

For the other keys we have

K,=011110011010111011 011001 110110111100100111 100101
K; =010101 011111 110010001010 010000101100111110 011001
K,=011100101010110111010110110110110011010100011101
Ks=011111001110110000000111 1110101101 01001110 101000
Ks=011000111010010100111110 010100000111 101100101111
K, =111011 001000010010 110111 111101 100001 100010 111100
Kg=111101111000101000111010 110000010011 101111 111011
Ky, =111000001101 101111 101011 111011011110 000001 0 11101
Ky =101100011111001101 000111101110 100100011001 001111
K;; = 001000010101 111111 010011 110111 101101 001110 000110
K;;=011101 010111000111 110101100101 000110011111 101001
K;3 =100101 111100010111 010001 111110101011 101001 000001
K, =010111110100001110110111111100101110011100111010
K;s=101111 111001 000110001101 001111010011 111100001010
K =110010 110011 110110001011 000011 100001 011111 110101

2

Now we look at the message itself.

Encoding of the message M begins:

113

There is an initial permutation IP of the 64 bits of the message data M. This
rearranges the bits according to the following table, where the entries in the table
show the new arrangement of the bits from their initial order. The 58th bit of M
becomes the first bit of IP. The 50th bit of M becomes the second bit of IP. The 7th bit
of M is the last bit of IP.

IpP

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7
Initial permutation on block M, given previously, we get following

M = 0000 0001 0010 0011 01000101 01100111 10001001 10101011 11001101
11101111

IP = 11001100 00000000 1100110011111 11111110000 10101010 1111 0000
10101010

Next divide the permuted block IP into a left half Ly of 32 bits, and a right half Ry of
32 bits.

Example: From IP, we get Lo and Ry

Xo=1100111011100111 10101010 11001001
Yo=10001110101100110110 111011101010

2

We now proceed through 16 iterations, for 1<=n<=16, using a function f which
operates on two blocks--a data block of 32 bits and a key K, of 48 bits--to produce a
block of 32 bits. Let + denote XOR addition, (bit-by-bit addition modulo 2). Then for

n going from 1 to 16 we calculate

Xn = Yn—]
Y, = X1+ f(Yu1, Kn)

This results in a final block, for n = 16, of L;sR;s i.e. in each iteration, we take the
right 32 bits of the previous result and make them the left 32 bits of the current step.
For the right 32 bits in the current step, we XOR the left 32 bits of the previous step

with the calculation f.

Example: For n =1, we have

K; = 000110 110000 001011 101111 111111 000111 000001 110010
Xi=Yy= 1111 0000 1010 1010 1111 0000 101 0 1010

Yi=Xo+ (X, K))

13

E BIT -SELECTION TABLE

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17

16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Xo= 11110000101010101111 000010101010
E(Xy) =011110 100001 010101 010101 011110 100001 010101 010101

K; = 000110 110000001011 101111 111111000111 000001 110010
EXy) = 011110100001 010101 010101 011110100001 010101 010101
K;+E(Xy) = 011000 010001 011110 111010 100001 100110 010100100111

Ky + E (Ry1) =WiWWs W WsWsW7Ws,

Where each W; is a group of six bits. We now calculate

S 1(W1)S2W2)S3(W3)Ss(Wo)Ss(Ws5)Ss(We)S7(W7)Ss(Ws)

S1

Column Number

Row
No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 4 13
0 15 7
4 1 14

15 12 8

14 4 13
0 15 7
4 1 14

15 12 8

15 1 8
3 13 4
0 14 7

13 8 10

10 0 9

13 7 0

13 6
110 13
7 13 14

13 11

10 6 9
3 15 0
2 12 4

N G BN

14

11

o O 0 W

215 11 8
14 2 13 1
13 6 2 11

4 9 1 7

S1

215 11 8

14 2 13 1
13 6 2 11
4 9 1 7

S2

6 11 3 4

15 2 8 14
10 13 1
3 15 4 2

S3

6 3 15 5

3 4 6 10

8 15 3 0

6 9 8 7

S4

0 6 9 10

6 15 0o 3

12 11 7 13
10 1 13 8
S5

7 10 11 6

3 10
10 6
15 12

5 11

3 10
10 6
15 12

511

9 7
12 0

5 8
11 6

113

2 8
11 1

4 15

1 2

4 7
15 1

9 4

8§ 5

6 12
12 11
9 7
3 14

6 12
12 11
9 7
3 14

2 13
110
12 6
7 12

12 7
5 14
2 12

14 3

8§ 5
2 12
3 14
511

3 15

5 9
9 5
3 10
10 O

a 0 W o

13

The tables defining the functions Sj,...,Ss are the following:

5 9 o 7

9 5 3 8
3 10 5 0
10 0 6 13

12 0
6 9
9 3
0o 5

510
11 5
2 15
14 9

11 4 2 8

12 11 15 1
510 14 7
11 5 212
11 12 4 15
110 14 9
5 2 8 4
12 7 2 14
13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

(-

Sé6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 511
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3

9 14 15 2 12 3 7 0 4 10 113 11

4 3 2 12 9 5 1510 11 14 1 7 6 0 8 13

S7

11 214 15 0 8 13 312 9 7 510 6 1
13 0 11 7 4 9 110 14 3 512 2 15 8
1 4 11 13 12 3 7 14 10 15 6 8 0o 5 9
6 11 13 8 1 4 10 7 9 5 015 14 2 312

S8
13 2 8§ 4 6 15 11 1 10 9 3 14 5 0 12
115 13 & 10 3 7 4 12 5 6 11 0 14 9 2
1
7

9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 4 10 8 13 15 12 9 0 3 5 6 11

2

S=PS1(W)S2W2)...Ss(Wy))

The permutation P is defined in the following table. P yields a 32-bit output from a
32-bit input by permuting the bits of the input block.

16 7 20 21
29 12 28 17

32 27 3 9

19 13 30 6
22 11 4 25

From the output of the eight S boxes:

S1(W)S:(WIS3(W3)So(W)Ss(W3)Ss(WeSAW7)Ss(Ws) = 0101 1100 1000 0010 1011
0101 100 O111

Getting

f=01010111 111111101011 1111 1010 100 1
R, =1L “rf(R(),K])

= 1100 0000 0110 1000 1101 0101 1001 1100
+01100100 01100110 1011 1111 1101 1110
=11001001 0101 1110 00100001 0111 0110

113

Ri6Lis

And apply a final permutation IP" as defined by the following table:

Ip™
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the pre output block as its first bit, bit
8 as its second bit, and so on, until bit 25 of the pre output block is the last bit of the

output

X6 = 01000011 0100 0010 0011 0010 0011 0100
Y16 = 00001010 0100 1100 1101 1001 1001 0101

We reverse the order of these two blocks and apply the final permutation to

Y16X16 = 00001010 01001100 11011001 10010101 01000011 01000010 00110010
00110100

IP" = 10000101 11101000 00010011 01010100 00001111 00001010 10110100
00000101

That in hexadecimal format is

85E813540F0AB405.

This is the encrypted form of

M = 01242323 ABCDEF: namely, C = 8SE8987980F0A.

These are the mathematical steps required for encrypting the message. Now,
Decryption is inverse process of encryption, which means that all the sub keys are

applied in the reverse order.

2.2. Advanced Encryption Standard (AES)

Another type of symmetric and block encryption technique is ‘AES’, Advanced
Encryption Standard also known as RIINDAEL algorithm. It is named after Vincent
Rijmen and Joan Daemen, its creators. It is effective since National Institute of

Technology (NIST) used it in May 26, 2002.

It is a secret key encryption technique and works on the fixed number of bytes (word
size) of the message. The RIJINDAEL algorithm technique can be implemented by
defining and using different values for the byte size of message block and also for the

keys used for the encryption process and different number of iterations for the

mathematical steps are done that is selected as per selection of the corresponding key
length the block size. Iteration for all the steps is called ‘Round’. And number of
rounds for the predefined steps of the algorithm depends on block and key size. The
key is then further expanded in sub keys through key expansion.

Following table shows the specifications for the algorithm rounds.

2.2.1. Algorithm Terms

The algorithm has three different standards referred as AES-128, AES-192 and AS-
256. Before going to the mathematical steps of the algorithm, first some primary

things of the algorithm are discussed as;

e Input/Output

o Byvtes Block Size | Key Size | Number of
o Aray of Byte | (bytes) (bytes) Rounds
o State 16 16 10
16 24 12
32 14
2.2.1.1. o Input/Output

Both input and output for AES algorithm each consist of 16-bytes (128-bit) sequence
that is also referred as blocks. While the cipher key for AES algorithm may be 16
bytes (128-bit), 24 bytes (192-bit) or 32 byte (256-bit), as shown in the above table.

The indexing will start from zero as:

0<1<127,0<1<197 and 0<1<255

2.2.1.2. Bytes

Key Length: 128 bit, 1 <n < 16 bytes
192 bit, 1 <n <24 bytes
256 bit, 1 <n <32 bytes

All bytes will be ordered as

{e7, e, €5, €4, €3, €3, €1, €0,}

And interpreted as polynomial as;

4 3 2 7 Ly
e7X7 + 66X6 + e5x5 +e4X T e3X +exXx teXxt+ep= E:-zc. erxt

Sometime, finite field operations involve an extra eg bit, at left most and in that case

9th bit is represented as “{0/1} .

2.2.1.3. Array of Bytes

Array of byte will be represented in the following form

bo, b1 b5 (16 byte sequence)
Bit in the bytes are orders as following

inpputo, inpput, inpput, inpputs inpput;,7,

by - {inpputoy, inpput, inpput, inpput;, inpputy, inpputs, inpputs inpput; }

b15 = {inpputlzo, inpputm, inpputm, inpputm, inpput124, inpputlzs, inpputm, inpputm}

b, - {inpputs,, iNpputgy+1, iNPPULgata, INPPULgys3, iINPPULgyr4, INPPULgy+s, INPPULgats, INPPULgat7)

2.2.1.4. State

State is defined as two dimensional array of bytes. In the state array denoted by ‘S’, each
individual byte has two indices , row and column, with its row number x in range 0 < x < 4

and column number y in range 0 <y < Sy,

The state consists of four rows of bytes, each containing S, bytes, where S, is the block

length divided by 32. For e.g. 128/32 = 4. Every byte of the state is referred as S[r, c].

Hence when encryption or decryption, the input array, inn, is copied to the state array

accordingly to the following

S[r, c] = inn[r, 4c] forall, 0<x<4

0<y<S,

Similarly, at the end of encryption or decryption the state is copied to the output array

‘out’ as

113

ouut[r, 4c] = S|r, c] forall, 0 <x<4

OSYS Sp

2

2.2.1.5. The State as an Array

The four bytes in every column of the state matrix form 32-bit words, where the row

number x provides an index for the four bytes within each word. So the state can be

interpreted as a one dimensional array of 32-bit word (columns), w,, wi, Wa,

w3.Where the column number y, provides an index into this array.

t0,0

t1,0

t2,0

t3,0

t0,1

t1,1

t2,1

t3,1

2.2.2. Mathematical Preliminaries of the Algorithm

Being an iterative block cipher, the mathematical steps performed numbers of times

are

1. Add Round Kevy

Bvte Sub
Shift Row

Mix Column

Eal

Now, defining the above mentioned mathematical steps of AES algorithm. Giving

details, how these steps are performed on the message to be encrypted.

Wil

2.2.2.1. Add

W,

Wil

W,

Round Key

Each of the 16-bytes of the state is XOR against each of 16-bytes of the expanded key

for the current key. Expanded key bytes are never used again.

So once the first 16-bytes are XORed against the first 16-bytes of the expanded key
then the expanded key bytes (1-16) are never used again. In the next round when the
Add Round Key function is called then bytes (17-32) of the expanded key bytes are
XORed with the 16-bytes of the state array.

2.2.2.2. Byte Sub

113

In encryption every state array value is replaced with the corresponding S -box value.

0 1 2 3 4 5 6 7 8 9 A B C D E F
637C 77 7BF2 6B 6F C53001672BFE D7 AB76
CA 82 C97D FA 59 47 FO AD D4 A2 AF 9C A4 72 CO
B7 FD 9326 36 3F F7 CC34 A5 E5F1 71 D831 15
04 C723C31896059A 07 1280 E2EB27 B2 75
09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
DO EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
CD OC 13EC5F 97 44 17 C4 A7 7TE 3D 64 5D 19 73
60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
E0 323A 0A 490624 5C C2D3AC 6291 95E479
E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7TA AE 08
BA 78252E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
70 3E B5 66 48 03 F6 OE 61 35 57 B9 86 C1 1D 9E
E1F898 1169 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

M U QO B B © ® 9 6 L A W N KR O

F 8CA1890DBF E642 684199 2D OF BO 54 BB 16

AES S-Box Lookup Table

2

Such as, HEX A7 would get replaced with HEX 5C.

2.2.2.3. Shift Row

This is another easy step of the algorithm. In this step state matrix is arranged

and then performs a circular shift for each row. But this is not a bitwise circular

shift. It is done as:

1T 2 3 4
5 6 7 8
92 10 11 12
1314 15 16

2.2.2.4. Mix Column

1 2 3 4
=> 6 7 8 5
1M 12 9 10
16 13 14 15

It is the most difficult step both to understand and to explain among all the above

steps. It is further divided into two steps:

o Maftrix Mulfiplication

e Galois Field multiplication (GF)

2.2.2.4.1. Matrix Multiplication

A four state table that is described in Shift Row function, the multiplication is

performed one column at a time, i.e. 4-bytes.

There are total 16 multiplications i.e. each value is stated in column is multiplied with
every value in matrix. Finally, the all the results are XORed mutually and four bytes

are resulted for the next state.

The multiplication is performed one matrix at a time against each value of a state

column.
2311 al a5 a9 al3
1231 a2 a6 al0 al4
1123 a3 a7 all al5
3112 ad a8 al2 al6
(Multiplication Matrix) (16-byte State Array)

113

The 1" column will include state bytes 1-4 and will be multiplied against the matrix

as.

al = (al *2) XOR (a2*3) XOR (a3*1) XOR (a4* 1)
a2 = (al *1) XOR (a2*2) XOR (a3*3) XOR (a4*1)
a3 = (al *1) XOR (a2*1) XOR (a3*2) XOR (a4*3)
a4 = (al *3) XOR (a2*1) XOR (a3*1) XOR (a4*2)
(al= specifies the first byte of the state)

The second column will be multiplied against the second row of the matrix in the
following manner.

b5 = (b5 *2) XOR (b6*3) XOR (b7*1) XOR (b8*1)

b6 = (b5 * 1) XOR (b6*2) XOR (b7*3) XOR (b8*1)

b7 = (b5 * 1) XOR (b6*1) XOR (b7*2) XOR (b8*3)

b8 = (b5 *3) XOR (b6*1) XOR (b7*1) XOR (b8*2)
The multiplications will continue until all the values are processed.

2

2.2.2.4.2. Galois Field Multiplication (GF)

In this step the mulliplication result from the above step ie. Matrix
Multiplication are performed over the Galois Field (GF), which is the lookup of

L table and in addition to a lookup of E table.

13

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0103050F 113355FF1A2E7296 A1F8 1335

1 5FE13848D87395A4F7 0206 0A 1E 22 66 AA
2 E534 5C E4 37 59 EB 26 6A BE D9 70 90 AB E6 31
3 53 F5040C 14 3C 44 CC 4F D1 68 B8 D3 6E B2 CD
4 4CD467A9E03B4D D7 62 A6 F108 1828 78 88
5 839E B9 D0 6BBD DC 7F 81 98 B3 CE 49 DB 76 9A
6 B5C457F9 103050 F00B 1D 27 69 BB D6 61 A3
7 FE192B 7D 87 92 AD EC 2F 71 93 AE E9 20 60 A0
8 FB 16 3A 4E D2 6D B7 C2 5D E7 32 56 FA 15 3F 41
9 C35EE23D 47 C940CO05BED2C 749C BF DA 75
A 9F BA D5 64 AC EF 2A 7E 82 9D BC DF 7A 8E 89 80
B 9B B6 C1 58 E8 23 65 AF EA 25 6F B1 C8 43 C5 54
c FC1F2163A5F4 0709 1B2D 77 99 BO CB 46 CA
D 45 CF4ADE 79 8B 86 91 A8 E3 3E 42 C6 51 F3 OE
E 1236 5A EE 29 7B 8D 8C 8F 8A 8594 A7 F20D 17
F 394BDD 7C 8497 A2 FD 1C 24 6C B4 C7 52 F6 01

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0019013202 1A C6 4B C7 1B 68 33 EE DF 03

64 04 EOOE 348D 81 EF4C 71 08 C8 F8 69 1C C1
7D C2 1D B5 F9 B9 27 6A 4D E4 A6 72 9A C9 09 78
65 2F 8A 0521 0FE12412F0 82 45 35 93 DA 8E
96 8F DB BD 36 DO CE 94 13 5C D2 F1 40 46 83 38
66 DD FD 30 BF 06 8B 62 B3 25 E2 98 22 88 91 10
7E 6E 48 C3 A3 B6 1E 42 3A 6B 28 54 FA 85 3D BA
2B 79 0A 15 9B 9F 5E CA4E D4 ACE5 F3 73 A7 57
AF 58 A8 50 F4 EAD6 74 4F AEE9 D5 E7 E6 AD E8
2CD7757AEB 16 0B F5 59 CB 5F BO 9C A9 51 A0
7FOCF6 6F 17 C449 ECD8 43 1F 2D A4 76 7B B7
CC BB 3E 5A FB 60 B1 86 3B 52 A1 6C AA 55 29 9D
97 B2 87 90 61 BE DC FC BC 95 CF CD 37 3F 5B D1
5339 84 3C 41 A2 6D 47 14 2A 9E 5D 56 F2 D3 AB
44 1192 D9 23 20 2E 89 B4 7C B8 26 77 99 E3 A5
F 67 4A ED DE C5 31 FE 18 0D 63 8C 80 CO F7 70 07

H O O B B © ® 966 GG A W N R

2

All the numbers being multiplied using Mix Column function, when converted

to HEX will form a maximum of two digit HEX number figure.

1st digit in the number on vertical index and 29 digit on the horizontal index,
but if value being multiplied is composed of only one digit, we use ‘0’ on
vertical index. For e.g. if two HEX values being multiplied are EG*18, we first

lookup L (EG) index which for e.g. returns B7 and lookup L (18) will gives B3.

At this stage, L lookup is complete, now we will add these two numbers, the
only thing to be take care of is that if addition results greater than FF, then FF is
subtracted from the addition result. For e.g. BB + G7 = 158 > FF then the final
result is 158 — FF = 43. Now the last step is to lookup the addition result in L
table, for e.g. 43 — A3. Therefore, result of EG*18 over GF is A3.

Similarly this was an example for a value of the Mix Column multiplication, this

step is repeated for all the values of the Mix Column multiplications.

These are the mathematical step for the AES algorithm , and are repeated in
different number of “ ¥ as per standard of AES followed, that includes

the key length, as explained in earlier.

RSA Encryption

RSA is the algorithm for public key encryption. This technique of encryption was a
great advancement in the field of public key encryption and it was used for signing
and as well as for encryption. The algorithm was described by three students of MIT
in 1977. Their names were Ron Rivest, Adi Shamir and Leonard Aldern and the name

RSA is the 1nitials of these three students.

Since this a s public key encryption technique, so we need two keys one is called the
public key that is used for encrypting the message and the other is private key that is
used to decrypt the message. RSA is a very good and secure technique since the key
length is sufficiently large and the algorithm is very fine. Usually the key length that
is used can be of 128-bits, 256-bits, 512-bits, 1024-bits and 2048-bits depending upon
the nature of data to be encrypted. The basic idea behind this technique is presented as

follows.

If we have two numbers and someone asks us to multiply these numbers then it’s a
very simple task to do and we will do it in seconds to get the answer. But if someone
gives us a very large result after multiplying two numbers and asks us to find out
those two numbers, then it’s really a very hectic job even we know that the result is
achieved after multiplying two numbers. We need to try all the possible factors and it
needs a lot of time. Computers can perform such large calculations in small amount of
time but if the result given to us is of 200 digits and we are to find the factors then its
very difficult job for the computers as well. This is the main idea behind this
technique where the primary key is generated after multiplying two very large prime
numbers of 100 or may be 200 digits each and then the rest of the algorithm is applied
to encrypt and decrypt the message. The algorithm is presented in the following in
detail.

3.1. Mathematical Preliminaries of the Algorithm:

Suppose person N wants to create a public key that will be used by the person U to

encrypt the message for person A. The following steps are used

3.1.1. Step1

e Inthe first step, N has to convey his public key to U so that he can encrypt the
message for N using this key. Two create the key, N has to select two very
large prime numbers say ‘p;” and ‘p,’ of 100 or even 200 digits each.

e After selecting two numbers p; and p,. N has to multiply these numbers to get
the public key ‘P’.

e Person N needs to send another number say it ‘e’ along with the public key to
U. e is co prime to the product of (p;-1) and (p>-1). ‘e’ is also the part of the
public key so it has to be told to U in the beginning. The public key P can be

told to any other person as well if someone wishes so.

So the first and foremost step in this technique is to create and convey the public key
and it is understood that the persons N and U have already agreed upon how to

convey this key P and e.

3.1.2. Step 2

Now in the second step the person U has to encrypt the message for N using the key
that is conveyed. Suppose the message to be encrypted is ‘M’

e U calculates the encrypted message ‘C’ by the following formula
C =M°(mod N)

After this the encrypted message is sent to U. by the end of this step, we have
encrypted the message using RSA technique.

3.1.3. Step3

Now A has received the encrypted message and he has to decrypt it.
e To decrypt the message, N needs a number ‘d’ satisfying the following

condition

13

ed (mod (p;-1)*(p2-1)=1

2

After calculating d , N need to get the original message using the following

formula

113

D=C? (mod N)

2

This is a very tedious and hectic calculation because the values of the d and e are

large and it takes a lot of time.

3.2. Mathematical Example

To illustrate and understand the algorithm, a mathematical example is presented. Here
the values of p; and p, are taken very small just for understanding purposes, but it
should be clear that the numbers must be very large in actual implementation of the

technique.

o Lets we take p;= 23 and p,= 41, both these are prime numbers.
e Now the primary key is calculated after multiplying p; and p>. P=23%*41=941
o In the next step we have to calculate the value of e which is co prime to (p;-

1)* (p2-1). In this case (22)*(40)=880 and e=7 which is co prime of 880.

e This primary key P and e is used by the sender to encrypt the message ‘T,
using the formula C = T® (mod N). Let T=35 in this case then the encrypted
message will be 545. So 35 is transformed to 545 after applying the encryption
algorithm.

o At the receiver end, the message has to be decrypted but we need d which is
calculated by the formula ed (mod (p-1)*(q-1) = 1 and after applying the
formula d comes out to be 503.

e After the calculation of d, we need to find the decoding and get the original
message, for this purpose the formula used is D = C* (mod P). After doing the
calculation final result comes out as D which is 35 which and the original

message.

3.3. RSA as Block Cipher

A block cipher is referred to as an algorithm that converts a fixed length block of data
into a block of cipher text (encrypted text) data of the same length. The secret key
used in the process of encryption and decryption depends upon the type or technique
being used. The fixed length of the data to be encrypted is called the block size, and
usually the block size is 64 bits. But it may vary as the computational speed and
power of the new computers is very high. Moreover the block size also depends upon

the technique used for the encryption. Different techniques have different block sizes.

RSA is also a block cipher and the block size used in this technique may be of 64 -bits,
128-bits, 256-bits or any higher length data. But it must be kept in mind that the block
size should not be greater than the public key N that is the multiplication of two very
large prime numbers p and q. So working with RSA, the block size can be of any
length but smaller than the public key. If the block size is greater than the public key
N, then it can be a real problem and this technique will not work correctly. While
using the block cipher to encrypt the message, we use certain techniques known as

modes of operations. These modes should be efficient and secure as the original

cipher to encrypt the message with efficiency and security. These modes can basic

properties other than the original ciphers.

3.4. RSA as Stream Cipher

A stream cipher is referred to as symmetric encryption algorithm. Stream ciphers are
usually very fast compared to any block ciphers. Since block ciphers operate on large
blocks of data of a fixed length, stream ciphers typically work on smaller units of
plaintext, usually bits. The process of encryption of any message with block cipher
yields the same coded text when using the same secret key but the process of
encrypting a message with stream cipher results in varying length of cipher text
because the algorithm is applied on the bits and this smaller data can be of variable

length.

The stream ciphers generate key streams and the complete operation of the encryption
is accomplished when this key stream is combined with the original message to be
encrypted. Usually this key is XORed with the original message. This is also termed
as synchronous stream ciphers. Because of this fact most of the stream cipher

algorithms are called self synchronous.

Basically the RSA encryption technique is not used as stream cipher due the

following reasons.

e RSA encryption technique involves complex calculations making it infeasible
to be used as stream cipher.

o Since this technique involves very huge calculations so it takes a lot of time
for these computations. Use of large amount of time makes this technique

inappropriate for streaming data. So real time results are not achieved.

So these are the reasons for which RSA encryption technique is not used for
streaming data unless we find a way to compute the large calculations in small

amount of time and making it possible to get the results in real time.

Stream Ciphers

4.1. Introduction

Another class of encryption algorithms is called stream ciphers. It is an important
class of cryptography and the basic idea behind stream ciphers is that they encrypt
individual character of the original message at a time. These ciphers differ from block
ciphers as they encrypt a fixed length block of data at a time. Stream ciphers are very
fast as compared to block ciphers because they operate upon small units of data
normally bits. We require stream ciphers in most of our applications where the bits
are to be processed as soon as they are received like in telecommunication and in any
other voice application. Since these applications have no or less error propagation.
These techniques are also deployed in the applications where the chances of

transmission errors are very high.

We find very less fully defined stream ciphers due to some reasons. One of the
reasons is that there a number of well defined and standardized block ciphers are
available in the market. Secondly most of the stream ciphers used today are
confidential and are kept secret. However the use of stream ciphers has tremendously

increased and is tend to increase more rapidly because they are being used in most of

the applications. Linear feed back shift registers (LFSRs) are the building blocks in

most of the stream ciphers.

4.2. Classifications

The stream ciphers may be symmetric or public key but symmetric stream
ciphers are used throughout the world on broader scale so we will discuss only the
symmetric stream ciphers in this chapter. Stream ciphers are classified as
Synchronous or self — synchronizing. The brief introduction and characteristics of

these types are given in the following.

4.2.1. Synchronous Stream Ciphers

In this type of stream cipher, the key stream is generated independently of the original
message and the coded (encrypted) message. Some of the characteristics of this type

are as follows.

e In Synchronous stream ciphers sender and receiver, both should be
synchronized. It means they should use the same key and should operate at the
same position of that key while decrypting. If the cipher text digits are deleted
or inserted while transmission then the synchronization is lost and the process
of decryption is failed. To restore the process of decryption, we need to re
synchronize the sender and receiver that require some special things, e.g. re
initialization, adding of markers at some intervals in the cipher text

e Ifsome of the digits of the cipher text are modified during the transmission but

they are not deleted then they do not affect the other digits to be decrypted.

Most of the stream ciphers that are defined till now are binary additive stream ciphers

which are defined as

13

“A binary additive stream cipher is a synchronous stream cipher in which the key
stream, plaintext, and cipher text digits are binary digits, and the output function h is
the XOR function.”

2

4.2.2. Self-Synchronizing Stream Ciphers

In this type of stream cipher, the key stream is generated as a function of key and the

fixed number of digits from he previous cipher text. Some of the basic features of this

technique are as follows.

As this technique is self synchronizing, if some digits are inserted or deleted in
the cipher text even then the decryption process is not affected because it
depends only on the previous digits of the cipher text. So synchronization is
achieved at a loss of only some digits of plain text.

This technique has limited error propagation. Suppose the state of self
synchronization depends on some number of previous digits of cipher text,
then if we modify any of the digit in the cipher text during the transmission,
then the decryption is incorrect up to that number of previous digits and then
the correct decryption resumes.

In this technique the statistics f the plaintext or original message is diffused.
Since every digit in the plaintext influences the whole cipher text, the
statistical properties of the plaintext are dispersed throughout the cipher text.
So the self synchronization techniques are more secure against any kind of

attack based on plaintext redundancy.

Since all these stream ciphers are made up by Linear feed back shift registers

(LFSRs), which is very well suitable for hardware implementations but these stream

ciphers are not proposed for the software implementations. Because of this new

stream ciphers are being developed for particularly fast and efficient software

implementation. But these are not presented in this chapter because either they are

new or inappropriate. Two stream ciphers designed specially for fast software

implementation are RC4 and SEAL. Instead of these two ciphers two other well
known stream ciphers are Output feedback (OFB) and Cipher Feedback (CFB). RC4

1s most common stream cipher not based on LFSR and is used commercially. It uses

variable key length and is presented in the next article.

4.3. RC4, a Stream Cipher Algorithm

RC4 also known as ARC4 is a commonly used stream cipher in commercial areas. It
is very famous for its speed and simplicity in the software implementation. This
algorithm was developed in 1987 by Ron Rivest. It is used in many application such
as secure socket layer (SSL) to protect the traffic on the internet and in WEP to secure
the wireless networks. In this cipher a pseudorandom stream of bits that is called the
key stream is generated which is combined with the original message with the XOR
operation for encryption. On the other hand, at the other side decryption is done in the

same way.

4.3.1. Generation of Key Stream

To generate the key stream foe RC4 cipher, the internal secret stat is used that

consists of the following two parts.

e A permutation of all 256 possible bytes.

o Two 8 bit index pointers.

The permutation is initialized with a variable length key and the size of the length
may vary between 100 to 255 bits. This process is done by Key Scheduling Algorithm
(KSA). After doing this, in the next step, the key stream is generated using Pseudo
Random generation Algorithm (PRGA).

4.3.2. Implementation

As it has been stated above that many stream ciphers are built using Linear Feedback
Shift Register that is suited for the hardware implementation. But RC4 stream cipher
is not based on these LFSRs. It requires byte manipulation for the implementation of
this technique. It uses 256 bytes of memory for the state array and k bytes of memory
for the key.

4.4. SEAL Stream Cipher

SEAL is a short form of software optimized encryption algorithm and it was evolved
in 1997. Since it is a new encryption technique, it has not got much appreciation from
the cryptography community. It is one of the stream cipher techniques that work very

efficiently in software implementation and is especially for 32-bit processors.

4.4.1. Implementation

In this technique of stream cipher, length increasing pseudorandom function is used.
This function basically maps a 32-bit sequence n to L bit keystream. All this process
is controlled by a 160-bit long key. In the first step that is also called the
preprocessing step, the key is put into larger tables using the table generation
function. This function is based upon the Secure Hash algorithm (SHA). SEAL-1
differs from SEAL-2 because SEALI used the Secure Hash Algorithm while the
SEAL2 used modified secure hash algorithm.

4.5. Conclusion

Here is a brief comparison between different kinds of stream ciphers. On the broader
scale, the stream ciphers are categorized in two different forms. One is called the
synchronous stream ciphers and the other is self synchronizing steam ciphers. Self
synchronizing stream ciphers are better ones because they can synchronize themselves
if some cipher text digits are added or deleted while transmission. Then we need to
look whether we want to make our hardware fast and efficient or the software. The
stream ciphers based upon LFSRs are efficient and fast for implementing hardware
while the stream ciphers based upon byte manipulation are fast for software
implementation. We have presented to different stream ciphers here. A brief

comparison between the two is given as follows.

RC4 was developed in 1987 and had an impressive speed. It used the effective keys
lengths between 40 to 200-bits. Its initialization vector was of 8 bits internal state was

of 2064 bits. Its computational complexity was of 2 ' to 2%

SEAL was developed in 1997 and was very fast technique especially for the 32-bit
processors. Its initialization vector was of 32-bits and it used the length increasing

pseudorandom function.

Design Implementation

The major strength of RSA Encryption lies in the complex calculations involved. In
order to implement it on FPGA we were required to simplify the used functions and in
the mean time we had to take care that these simplifications are not much time
consuming so as to ensure efficient transmission. Since we have to implement it on
voice and we know that while transmissions the voice frequency is taken to be 3300
Hz and approximated as 4000 Hz. In order to make it smooth after reception, we use
the sampling frequency of 8000 samples per second. This sampling frequency will

also provide us with timing constraints involved in Encryption and Decryption.

Sound Frequency = 3300 Hz 4000 Hz
Sampling Frequency = 8000 Samples per second

Sampling Time =1/8000
=0.000125 seconds

=.125 mill iseconds

Here we have our implementation limits i.e. one encryption decryption process should
not be any longer than .125 milliseconds or simply saying our designed system should

be able to encrypt and decrypt 8000 8-bit values in each second.

S.1 Problems in RSA Encryption:

RSA Encryption though strong yet involves various computational problems for its

use as a voice encryption scheme. Provided below is a list of some of these issues:

e Key Generation

e Complex Calculations

e Timing Constraints

e Deterministic Encryption Algorithm
5.1.1. Key Generation
Length of public and private keys is a pivotal point in strength of symmetric
encryption techniques. Conventional methods of generating public and private keys
are considerably time consuming but there have been significant advancements in the
field of key generation and we can employ those techniques for the purpose of
generating prime numbers of desired length. The discussion on key generation

producing methods is out of scope of this project.

5.1.2. Complex Calculations:

Although RSA is one of strongest encryption techniques due to the complex

calculations involved but this is also its major drawback. The computational cost and

timing has always been a challenge for designers. Various techniques have been
adopted to minimize computational delays. Given below are some of the methods that

are being used.

Systerm tirme using Direct Approach

0

10

Time taken in seconds

10’

o 1000 2000 3000 4000 a000 w000 J000 8000
Mumber of Samples

Figure-5.1

Figure-5.1 provides us with a graph which shows computational time required for
different number of cycles. We can see here that 1 sample is calculated in 0.0235

seconds whereas if we consider 8000 samples it will take 1912.61 seconds.

5.1.3. Timing Constraints
As stated earlier RSA involves complex calculations and for voice
transmission we need encryption time to be fairly less than .125 milliseconds.
This issue reside as a main problem during the course of this project and all
the efficiency methods were used to eliminate extra time consumption cycles

and bring out an optimized product.

5.1.4. Deterministic Encryption Algorithm

The problem with this approach is its deterministic behavior eavesdropper can
easily determine what has been transmitted. But since the look up table is
transferred randomly to the decrypter and disrupter first decrypts the 255
Encrypter values and then sorts them in ascending order making it very much
unpredictable. This behavior is somewhat related to symmetric encryption

behavior but since the randomizing algorithm is unknown it is harder to break.

5.1.5. Padding

Another problem which is with all encryption techniques is eavesdropper may
send blank data to check what private key is.[6] This problem can be resolved
using padding technique now all blank spaces or silence in our case will be
again randomly replaced by any value which corresponds to silence at both

Encrypter and decrypter end.

5.2 Efficiency Methods

Following are the efficiency methods that we have introduced and used for our design

implementation.

5.2.1. Modular Exponentiation Method

RSA encryption revolves around one equation hence all we can optimize is to

optimize calculations involved in this equation.

C=M°‘modN
Where C is encrypted message, M is original Message and (N,e) is public
key.[6]

By using modular exponentiation method we can perform both power and
modulus operations in one step. Moreover these calculations are done in a
manner so that the system doesn’t get overloaded as well. This method is
sometimes also referred as memory-efficient method. Although this method

requires a series of steps yet the memory footprint is substantially less

moreover the operations takes less time than before. The end result is that we

get a faster algorithm.

This algorithm makes significant use of the fact that if we are provided an
integer I which is product of A.B then

C=ImodN
=(A.B) mod N
= (Amod N. B Mod N) mod N

The steps are as follow:

1. Set variable count to ‘1’ and temp to ‘0’
Increment temp
Calculate pro = C * temp

C =pro mod N

©wok »wn

Repeat steps 1 — 4 until temp = e. [6]

The same can be used for decryption purposes. But while decryption we may

face relatively larger values in exponent.

5.2.2. Exponentiation by Squaring

Also referred as squaring algorithms sometimes, this algorithm optimizes the

even factors calculation of exponents [14]. For example the evaluation of

160°**mod 163

Would take considerable time and will consume big memory chunks. If one
uses the naive method of calculation the above expression will demand 282

modular calculations but if we observe we can figure out that

160°** =160 x (1607)140

Hence now we only need 140 modular calculations which show that we have
achieved a gain by factor of 2. [12] We can apply this method over and over

thereby reducing the complexity more and more.

This repeated process can be mathematically performed by writing the
exponent in base 2 and afterwards only calculating the exponential values

corresponding to ‘1’

Consider mathematically: [9]

11 1011
Z :Z()2

=78 % 72 g
— (2 * 2

~((z 2)2)2 2% 1

As we can see the above example needs fewer multiplications as compared to

normally used method.

System Time Using Optimization Technigues

Calculation Time in Seconds
]

i i i I i i i
0 1000 2000 3000 4000 5000 G000 7000 2000
MNumber of Samples

Figure-5.2
The illustration in Figure-5.2 shows the computational time required after
using optimized techniques. Now one sample is computed in 0.124 seconds

and 8000 samples will take 765.43 seconds.

5.3. Efficiency Using FPGA’s

Still the efficiency achieved is not sufficient enough to support voice

transmission. Hence we can use FPGA to make the algorithm more efficient.
5.3.1. Module Spreading

The first technique which we can use in order to achieve efficiency is module
spreading or loop unrolling. Unlike normal sequential programming, FPGA
provides us with concurrent execution of different commands. As we have
seen above that the exponential squaring algorithm uses recursive loop for

calculation of different values. Thus instead of using the recursive loop

approach we can spread this loop over FPGA so that both encryption and
decryption takes less time. This method may provide us with a significantly
less encryption decryption time and thus enabling the smooth transmission of
voice. However this approach requires greater number of gates which are not

currently available in Spartan 3 XC3S200 FPGA.

5.3.2. Pre Calculation

The second technique which we can use is that we add a deliberate delay at
receiver side i.e. when an input is encrypted it is stored in a register / memory
and decrypted also decrypts and stores the value and after a small pause the
voice is played keeping in view that the pause is sufficiently longer to support
upcoming values and a smooth voice can be heard. But this approach is not

Real time. Moreover, the delay may cause significant problems.

5.3.3. Look up Table

One other method which can be used is look up table. Since the input voice
signal is a quantized at 256 levels using 8 bit unsigned integers hence all
values are in a range on 0 — 255, now if we calculate these values in pre call
phase for sender and all these values are saved in a look up table and this table
is sent to decrypting end. Now from the encrypting side the data is taken from
microphone matched from look up table and then the corresponding value is

sent to other end.

[||:||_12]—l_l> Encrypter |]|:| Communication Channel

(8-bit value) (Encrypted value)
Value Encrypted Value
1 1
20 137052633
50 3797593931
120 4685081836
121 9660838571
122 1154709862
255 5394904865

Figure 5.3

Figure 5.3 is basically a block diagram of system as how it will perform

encryption and decryption.

A same table will exist at decrypter end and that will also compare it and then

play the corresponding 8 bit value.

Now again comes in the issue of latency of RAM, normally it takes 17 clock

cycles in comparing and transmitting one value which is pretty much acceptable.

5.4. Implementation Design and Constraints

Different approaches were used to implement the design. Every Implementation
scheme had its own advantages and disadvantages which led us to use other

platforms.

5.4.1. MATLAB Implementation

MATLAB was our first preference as an implementation platform. MATLAB
provided us with the first working prototype of the system design. After the first
prototype we were confronted with the limits problem. MATLAB was unable to
support keys above 16 bits. Moreover time taken for each calculation was of

significant concern.

5.4.2. C Implementation
In order to resolve the problems presented by MATLAB, The algorithm was

implemented on C, where as MATLAB served as an interface. Now the sound
was recorded and saved in a text file by MATLAB, C read the specified file and
saved the encrypted values in a separate file. This file is then read by decrypting
side and is decrypted. The final values are now again saved in a file and this file

is read and played by MATLAB again.

But still key length was an issue as C only provided us with a key length of 32

bits. Moreover this technique was not very suitable for Real Time conversations.

System time using T4+

Tirrie taken in seconds

i i I
u] 1000 2000 3000 4000 5000 E000 7000 s000
Mumber of Samples

Figure-5.4

Now the computation time was reduced to 0.023 seconds per sample and 8000

samples could be calculated in 68.31 seconds.

5.4.3. Maple Kernel

MATLAB provides us the services to access and use Maple Kernel. Maple is
general purpose software which can be used to perform complex mathematical
calculations. Maple provided us with a technique to break up keys and values in

structures this enabled us to use any key length and observe the behaviors.

- System time using Maple Kernal

Time taken in seconds
=

i i 1 i i i
o 1000 2000 3000 4000 S000 s000 Fooo 000
Mumber of Samples

Figure-5.5
The provided line graph provides us with the calculation timings using Maple
Kernel. Now the time taken per sample was 0.031 seconds and 8000 samples

will take 70.83 seconds.

Apparently, MAPLE seems to be less efficient, as compared to the C

implementation. Yet it may be worth noting that these computational times are

for (256, 32) bit keys.

5.5. Comparative Analysis

Provided below is comparative analysis of different techniques and their impact on
decrypted signal. All the times recorded below have been measured on a 1.8 Mhz

Pentium Class Processor and all results have been averaged over 10 samples.

Orignal Sound Signal
250 T T T T T

200

150

a0 -

o 2000 4000 BO00 G000 10000 12000

Figure-5.6
Figure-5.6 shows the original sound signal provided to Encrypter side. This signal has

been sampled over 11025 samples per seconds.

w10 Encrypted Sound Signal
T

245

045

! 1 1 1
o 2000 4000 BO00 000 10000 12000

Figure-5.7

The figure-5.7 is the encrypted signal. This is intermediate result. It is output of

encrypter and serves as input for decrypting side.

Decrypted Sound Signal
250 T T T

200 -

150 -

a0 -

0 2000 4000 BO00 H000 10000 12000

Figure-5.8
Figure-5.8 is basically is latency free diagram of output but it is the scenario where

Real time Constraints are not considered.

Distorted Signal due to Latency
250 T T T T T T T T

oot

Figure-5.9
Figure-5.9 above shows the impact of latency on the received signal. As we can see
though the signal is almost distorted yet still we can extract exact information to some

extent.

Delayed Dycrypted Sound Signal
250 T T T

200

180

1 | 1 1 L
u] 2000 4000 6000 5000 10000 12000

Figure-5.10
Figure-5.10 illustrates the output signal if we pre calculate the values. Here we can get
a delayed version of the sound signal, but once signal has started there is no

intermediate latency.

5.6. Experimental Observations

Now, following is the comparative analysis for the time required for the

processes like Public Key Generation, Evaluation of é and for Decryption.

5.6.1Public Key Generation

N=1024, e=64 N=512,e=32 N=256,e=16 N=32,e=8

Figure-5.11
Figure-5.11 provides us the calculation of time required to generate

public key N and signature e in seconds

5.6.2Calculation of “d”

NN\ NN\ N\ AR

B
s

Figure-5.12

Figure-5.12 depicts the calculation timings of “d” in various cases and key lengths.

5.6.3 Encryption Timings

4.5 7

3.5 1

2.5 1

1.5 1

0.5 A

‘, -1/

N=1024,e=64 N=512,e=32 N=256,e=16 N=32,e=8

M Encryption Timing

Figure-5.13

Figure-5.13 shows the time taken by system in encrypting one sample with a

specific key length.

[1]

Bibliography

The Data Encryption Standard (DES) and its Strength against Attacks by

D.Coppersmith.

2]
3]

Advanced Encryption Standard by Adam Berent.

Announcing the AES by Federal Information Processing Standards

Publication.

[4]
5]
[6]

171
8]

[9]

http://www.geometer.org/mathcircles

RSA Encryption by Tom Davis

A Method for Obtaining Digital Signatures and Public Key Cryptosystems
by R.L Rivest, A. Shamir, and L. Alderman.

http://www.RSA.com/labs

A Handbook of Cryptography by A. Menezes, P. Van Oorschot and S.
Vanstone, CRC press 1996.

http://www.wikipedia.com

