Transmission Control Protocol Westwood
AbstractTCPW (Transmission Control Protocol Westwood) is a new protocol which is well organized to control the window size with bandwidth estimation. It is compatible with both wired and wireless networks. This paper proves performance enhancement features of TCPW on fast networks. The experimental study reveals that with better utilization of network resources, TCPW has evolved as a very innovative algorithm that can improve link utilization over a wide range of applications. We then tuned TCP parameters on UBUNTO version of Linux and achieved better performance using TCPW. TCPW Performance is compared with the standard TCP and analytic advantages are cross validated by acquiring results from the network monitoring tools. Lab work and TCPW implementation are also discussed.

Index TermsTCP Westwood. Tuning TCP. QOS
I. INTRODUCTION
RANSMISSION Control Protocol is most widely used protocol for providing reliable delivery of traffic over IP based networks. According to [1], TCP Westwood was introduced to address the key problems in the heterogeneous networks and to show amazing performance in the high speed networks. Scalability and Stability has improved a lot with the implementation of TCP Westwood. TCPW harness two ideas: the calculation of end to end estimation of the available bandwidth and to use the estimate to define slow start threshold SSThresh and Congestion Window CWnd. TCPW also estimates continually the packet rate of TCP Connection by finding the average of the rate of return of ACKs packets. In comparison to TCP Reno, TCPW makes the more clever decision. TCPW sets SSThresh and CWnd synchronized with the effective connection of TCP at a time till the congestion is detected. TCPW also offer the features that are not included in the TCP Reno/ SACK, like knowledge concerning the bandwidth can be utilized to adjust the rate of a variable rate source.

TCP Reno was analyzed as a case material to implement TCP Westwood in UBUNTO version of Linux to tune TCP. The link delay and bandwidth are determined and results are gathered. After the downloading of the dump file, statistics are fed into the system to make an appraisal of the TCP performance. After the TCP parameters are changed, the file is re-downloaded and once again to evaluate the performance of TCP statistics are fed into the system to tune TCP, the results are analyzed and then the study is finalized.
II. background of TCP Congestion algorithms
The viability of Congestion Algorithms and their contributions have been amazing. According to [1], [2] and [3], TCP/Reno and New Reno [1] operates in two folds: Slow Start and Congestion Avoidance. Slow Start involves the reception of ACK (Acknowledge Packets) wherein the growth in the size of Sender's Congestion Window is noted. Therefore, a round trip time RTT is defined. So when the growth of Congestion windows [2] crosses the threshold of Slow Start, a variable ssthresh is initialized. Herein the transition of the TCP connection to congestion avoidance occurs. So in every linear RTT, when congestion window cwnd increases, then due to the packet loss, the variable cwnd is reduced by half.
      Now if TCP connection follows the standard Reno/New Reno mechanism, it suffers from two most critical problems:
· If the value of SSThresh is set to a very high number, the value of Cwnd produces so many packets that Bottleneck router suffer multiple packet losses and this result into maximum coarse time-outs and throughput is reduced significantly.

· If the value of SSThresh is set to a very low number, the connection is terminated for slow start and the linear Cwnd increases manifold. So the connection suffers from poor utilization of bandwidth, when delay is too high.
Bandwidth that occurs dynamically is another big limitation to TCP Connection. In a mixed network that is heterogeneous internet, bandwidth shows variation on account of multiplexing, access control and mobility. The Bandwidth that is utilized by TCP is influenced by other flows, where the bottleneck link is the shared medium. Bandwidth changes significantly when hand off and interference happen in a mobile network..

The best practice of TCPW is the direct utilization of bandwidth estimate to drive the window instead of calculating the backlog. The Backlog is a queue which is a large memory used to handle the incoming packets until the three handshake process in a TCP Connection is completed. The backlog queue controls and detects how many half open connections can be handled at a time. When the maximum numbers of incoming connection is reached, later requests are dropped.
III. Review of the state of art
In order to conduct a study concerning the modus operandi of TCPW during the occurrence of random errors/losses of packets, an analytic model was suggested by Jos L Gil, Motorola with the help of [4] Markov Chain Techniques. The model is a very important step towards providing deep insight in TCPW operations. Furthermore, it helps in cross validating the measurements taken and the simulation.

Study involves the behavior of TCPW in random packet loss that usually occurs due to link error or wireless interference. TCPW in the following scenario does not worry about buffer overflow. As TCP Reno over reacts and reduced the window to half, whereas TCPW resumes the transmission with the previous window. As the packet loss and retransmission timeouts randomly occur, TCPW is programmed to resume from the previous status, as long as the bottleneck is not found to be saturated. For this the most famous protocol which is the part of the study is snoop protocol. Snoop locally triggers the retransmission of packets lost on wireless links. With a view to accomplishing this, TCP Segments get monitored and Snoop stores, copies and retransmit the lost packets. On the other hand, it restricts the TCP duplicate ACKS on their way to TCP transmitter to prevent the retransmission of packets from the source. In this manner the bottleneck is kept from saturation and traffic flow is controlled and congestion is avoided.

In TCPW the sender machine calculate the Bandwidth estimate BWE continuously. This bandwidth estimate is termed as the bottleneck bandwidth which is used by TCP connection in a shared medium. BWE is equal to the rate at which the data is sent to TCP Receiver end. The estimate depends on the rate at which ACKS packets are received. When a packet loss is flagged i.e. 3 duplicate ACKs are received or timeouts reported, then the sender must redefine the congestion window Cwnd and Slow Start threshold SSThresh under Bandwidth Estimate.

When BWE varies from flow to flow sharing the similar bottleneck bandwidth, TCPW corresponds to the rate attained by each individual flow. Now when the bottleneck is saturated and packets get lost or dropped, TCPW fetches a set of congestion windows that correspond to the exact measured BWE rates and regenerate the individual throughputs.

Another mechanism is Round Trip time estimation. RTT is required of TCPW to calculate the window that supports the estimated rate of BWE. Interestingly the RTT must be calculated when bottleneck is set to overall minimum round trip delay (RTTmin)[3] when ACK RTTs are being monitored continuously.
IV. Problem Solution
We begin with checking the default congestion algorithm available on our version of UBUNTO Linux.

Cubic RENO was the default algorithm available on Linux distribution. As TCPW is supposed to work better in high speed networks especially on wireless links, so we decided to check its performance as compared to Cubic.

Lab Work: We calculated the link delay by setting option to capture only two packets (request and response) and checking delay between first and last packet. We also checked for delay and bandwidth using iperf -c command to connect to server.

The formula for slow start window is "Slow start size = 1 or 2 * (Max Segment Size)". We checked the value of maximum segment size available by giving the following command with administrative privileges #Ifconfig eth0

We used Wire-shark program for capturing traffic and then downloaded the file 'et2348' having size 95.4MB from http://tjatte.itslabb.bth.se/~fer/et2348.file.dump. The results are available in Table 1 about this download.
    We then again measured the link delay and bandwidth and changed the congestion algorithm to TCPW (TCP westwood). We re-downloaded the above mentioned file from same location and measured the results. The results are available in Table 1 and graph is shown in Fig 1.1.

Analysis: The above presented results reveal that TCPW provides better performance as compared to Cubic and by default its parameters are tuned efficiently. We tried our experiment by changing certain parameters of TCP buffers and queue length of interfaces but were not able to achieve substantial advantages as we would have predicted.
V. Conclusion
We have analyzed the TCP congestion algorithms in detail and our results confirm that TCP WESTWOOD has superior performance over Cubic due to its reaction to packet loss. We just changed the congestion algorithm and performance of downloads noticeably increased

Our results also depict that apart from congestion algorithm used, values of TCP buffers and Queue size of interface also plays 'minor' role in increasing the performance of the downloads. We have proved by gathering results using TCPW both before and after tuning and our results shows only slight increase in algorithm performance due to changed settings of buffer sizes of Socket Descriptor, Linux OS and Queue size of interface used.
References
1. Allman, M, Paxon V and Stevens W. "TCP congestion control. RFC 2581", Internet Engineering Task Force (IETF), Apr1999. [Online],Available:http://www.faqs.org/rfcs/rfc2581.html. [Accessed: Oct 2, 2009].

2. Ren Wang, Kenshin Yamada, M. Yahya Sanadidi and Mario Gerla "TCP With Sender-Side Intelligence to Handle Dynamic, Large, Leaky Pipes", IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, Vol. 23, No. 2, FEBRUARY 2005. [Online], Available: http://www.cs.ucla.edu/NRL/hpi/tcpw/tcpw_papers/WYSG05.pdf. [Accessed Oct 2, 2009].

3. Mario Gerla, Bryan K. F. Ng, M. Y. Sanadidi, Massimo Valla, Ren Wang " TCP Westwood with adaptive bandwidth estimation to improve efficiency/friendliness tradeoffs " , Computer Communications, Volume 27, Issue 1, 1 January 2004, Pages 41-58. [Online], Available: http://www.cs.ucla.edu/NRL/hpi/tcpw/tcpw_papers/GNSVW04.pdf. [Accessed Oct 2, 2009].

4. Jos L Gil " Modelling TCP with a Discrete Time Markov Chain" [Online], Available: http://www.comp.brad.ac.uk/het-net/HET-NETs05/ReadCamera05/P20.pdf. [Accessed Oct 2, 2009].
