The recent advances of hardware

Abstract
With the recent advances of hardware, computers are becoming smaller but more powerful. However, with the increasing demands of users, more complex and types of OSes and applications are needed to support in current von Neumann architecture-based computer systems due to the tight coupling of hardware and software, resulting in heavy system maintenance, management, and weak security. Many approaches emerged to solve these problems, but it is hard for them to tackle these e.ectively because they are still based on the traditional von Neumann architecture.

To solve these problems fundamentally, this paper presents a novel approach, named StoreVirt, to realize transparent computing, which separates computation and storage from inside a single physical machine to di.erent machines with a storage virtualization mechanism. With virtualization, all the OSes, applications, and data of clients are centered on the servers and are scheduled on demand to run on di.erent clients in a ??block-streaming?? way. Therefore, all the OS-, application-, and data-streaming can be intercepted, monitored, or audited independent of the clients and the OSes and applications run above them, alleviating the computing burden of these clients. Further, due to the central storage of OSes and applications, the installation, maintenance, and management are also centralized, leaving the clients light-weighted. Experimental and real-world experiences demonstrate that this approach is an e.cient and feasible for real usages.
Key words: transparent computing, extended von Neumann architecture, virtual storage, virtual disk
1. Introduction
The continuous progress of computer technology and the expanding user demands are the two main driv-ing forces of computing. With the advance of hard-ware, computers are becoming smaller, but with even more computing capacities than before. This not only makes it possible, but has led to an ever-increasing user demands and a diversity of applications, such as e-commerce, online games, among others. To satisfy the diverse requirements of users and applications, di.erent programming languages, middleware, application pro-grams, and even operating systems (OSes), each with their own pros and cons, have to be developed. How-ever, as we all know, in a von Neumann architecture-based computer, the hardware and software are coupled tightly in a single physical machine, hence the tight coupling of computation and storage. Thus, all these di.erent types of application and OS programs, have to be installed and co-exist in a single physical ma-chine to satisfy these diverse requirements. This, in turn, requires more powerful hardware (e.g., more ca-pacity of storage and thus computation). Finally, the whole computer system becomes more and more heavy-weighted and complicated, bringing about many prob-lems, such as low security, complex maintenance and management [1, 2], which are very common in today??s usage of computers.

To address these problems, many approaches emerged recently in the literatures. Networked stor-ages, such as NAS [3] or SAN [4], provide a conve-nient and central management of user or enterprise data. However, these approaches cannot deal with the issues about maintenance and management of OS and appli-cation programs. They only solve the partial problems faced by current computer systems. Recently resusci-tated virtual machine (VM) technologies [5, 6] can run multiple OSes with the help of an indirect virtual ma-chine monitor (VMM) to time-share and multiplex the underlying single physical machine. Due to the indi-rect abstraction between hardware and software, VM-related approaches and tools can achieve many advan-tages, such as higher security and availability that would be very hard to get without VM technologies [7, 8]. But in a VM-based approach, all these OSes and appli-cations running in di.erent VMs share the underlying hardware resources through the intervention of VMM, thus leading to a heavy overhead compared with native performance. To address the tight couplings, including between computation and storage, and thus the physical and logical topologies in network routers, virtual routers and other approaches based on the VM technologies [9] have emerged underlying the concept of network virtu-alization [10]. Of course, these approaches also su.er from high overhead of the VM technology. The most re-cent cloud computing [11, 12], advocated by companies such as IBM, Google and Amazon, can host the appli-cations, data or entire computing environments in data-centers, and deliver them to end users through WWW or other special protocols or utilities. This new com-mercial paradigm can reduce the cost of software main-tenance and management sharply by centralizing all of them in the data-centers. However, these application programs in cloud computing are specialized and ded-icated, so it is very di.cult for the traditional applica-tions (e.g., MS Word) to be hosted and delivered. In ad-dition, it just solves the maintenance and management problems of speci.c applications, not concerned about the traditional OSes, such as Windows.

We claim that the fundamental reason for these prob-lems faced by today??s computer systems lies in the fact that the computation and storage are coupled tightly in the traditional von Neumann architecture. As men-tioned before, this tight coupling with the increase of ca-pacity and complexity of software and hardware, leads to a more bulky and complicated computer system. However, current approaches and solutions didn??t con-sider the separation of these two, thus the OS and ap-plication programs are still coupled with the underlying hardware platform. Therefore, end users cannot freely access their desired OS and application programs via heterogeneous hardware platforms.

We proposed a new paradigm, called transparent computing, to solve the problems faced by today??s von Neumann architecture-based computer systems. In transparent computing, end users can access their de-sired services of OS and application programs via any device, at any time, and at any place, but need no care about those speci.c issues like service installa-tion, maintenance, management, etc. In this paper, we present a feasible approach to transparent computing with a novel idea, termed as StoreVirt, which separates the computation and storage from inside a single phys-ical machine to di.erent machines with a storage virtu-alization mechanism.

First, in StoreVirt, the OS and application programs are centralized and stored on the server(s), thus the setup, maintenance, and management are also central-ized, eliminating these tasks of end users. Second, these OS and application program codes are delivered in a streaming way to, and executed on the clients with their native resources, such as CPUs and memories. The na-tive execution of OS and application codes (in contrast to cloud computing), can leverage the client??s cheap and underutilized hardware resources, while reducing the workload of the servers and improving the system scala-bility. Finally, the monitoring, snapshot or versioning of user??s virtual storage can be carried out in the server(s) independent of the client OSes and users, thus the higher security of the whole system can be achieved. For ex-ample, users?? backup and resume to a time point can be carried out easily by rolling back her/his virtual storage image to a certain past one. In all, the transparent com-puting can achieve the bene.ts of higher security, ease of maintenance and management, while preserving the users?? experiences.

We argue that this approach of separation of com-putation and storage can also be potentially applied in network virtualization, such as building virtual routers, virtual .rewalls, etc., to improve the system selectivity, management and performance.

The remainder of this paper is organized as follows. In Section 2, we introduce the concept of transparent computing as a background. In Section 3, we provide the detailed ideas and design of StoreVirt. In Section 4, we present the implementation and real experiences of StoreVirt. In Section 5, we study the performance of StoreVirt though several experiments and compare it with other similar approaches. In Section 6, we con-clude this paper.
2. Background and Transparent Computing

2.1. Concept of Transparent Computing
To address the problems faced by today??s von Neumann architecture-based computers as mentioned above, we proposed a new computing paradigm, termed as transparent computing [1, 2]. Its aim is to realize
2.2. An extended von Neumann Architecture
Laying the theoretical basis of transparent comput-ing, we extend the traditional von Neumann architecture spatio-temporally [15]. In this section, we will describe it brie.y.

As we all know, the design of traditional von Neu-mann architecture-based computer is organized with .ve main components in a single physical machine: control unit, arithmetic logic unit, memory (including internal and external parts), input and output. Its core concept is ??stored program??, which means that the in-structions and data are treated and stored in the same way in the storage devices, fetched .rst from persistent storage (through input and output components) to mem-ory, and then are processed in the arithmetic unit. Thus, in today??s von Neumann architecture-based computers, the computation and storage of instructions and data are combined and limited in a single machine. Therefore, the software and hardware are coupled tightly and users can not choose and run any OS or application programs without installation.

There are several disadvantages with this approach that limits both computation and storage within a sin-gle machine. First, with the only local storage of in-structions and data, it is di.cult for the relatively small embedded devices to hold all the needed application programs, while the relatively larger size devices can-not share programs beyond their concerns. Second, OS and application programs on the local storage become larger and more complicated as user demands increase; all of them need maintenance and management, such as patching, upgrading, .ghting against malware (includ-ing virus, worms, spyware, etc.). This is usually very hard and annoying for non-expert users. Third, the me-chanical character of local storage, such as hard disk, is often broken and becomes the source of system failures.

In order to have fundamental solutions to the above problems, it is necessary to extend the von Neumann architecture in networking environments. The spatio-temporal extension can be described as follows. First, the components all in one single machine before can now be distributed among di.erent machines, break-ing the physical space limitation in traditional comput-ers. Second, to link the di.erent distributed components among di.erent machines, the traditional bus inside a computer has been extended to as a ??network?? outside the machines. Third, the computation and storage of programs are thus separated among di.erent machines based on the distributed hardware components. One machine (transparent client) is responsible for computa-tion, and share the programs (including OSes and appli-cations) stored on another machine (transparent server) via the networks. The transparent server just acts as repositories of all needed programs (including OSes and applications). These programs will be streamed to the client in small blocks on demand via the networks (anal-ogous to traditional bus), and be executed with the local resources, such as memory and CPU. In such a spatio-temporally extended architecture, the hardware compo-nents are extended from one computer (client) to an-other (server) via the networks, thus the requests for I/O, storage, and system bus devices have been extended from within a single machine (client) to the networks, as well as the status/data and user managements.

Accordingly, based on such a spatio-temporally ex-tended architecture, client devices may have less CPU power with limited size of memory and thus are light-weighted. Also, the light-weighted client devices can run di.erent programs (including OSes and applica-tions) that are shared among many users, alike a service-centric computing (e.g., Software-as-a-Service) envi-ronment, which reduces the software cost evidently. In addition, the centralized management can reduce re-markably the costs of maintenance, upgrade, security, usage and management as well. Therefore, a user can select any needed OS (e.g., Linux, Windows or an em-bedded OS) and applications stored on the servers via a same client machine. Also, a user can obtain the same service (e.g., applications on Windows) via di.er-ent client machines. Moreover, all computing services and technologies are transparent to users. Users can select and use their desired services, without concern-ing about the maintenance, upgrade, and management of them.
3. StoreVirt Mechanism and Method
To realize the transparent computing described above, we propose a StoreVirt mechanism. The main enabling technology for StoreVirt is the storage virtu-alization whose primary function is to provide a trans-parent client machine with virtual disks (Vdisk) instead of local physical hard disks, whose actual contents are located and stored on a remote server. Through storage virtualization, the OS and application programs, status and data stored on local disks are now processed on the central server, fetched to and executed on the StoreVirt clients via networks, hence the separation of computa-tion and storage is achieved. With the virtualization of storage, the system bus is naturally extended to as a net-work. The goal of this paper is to present and validate the StoreVirt mechanism.
3.1. Assumptions and environments
We made the following four assumptions in the Store-Virt model. First, StoreVirt model operates based on the spatio-temporally extended von Neumann-based com-puter (transparent client) and uses the remote storage of other computers (transparent server) for storing instruc-tions and data. The transparent client has both CPU and memory to complete the needed computation locally. Here, we assume that the client has enough computing power and volatile memories to carry out the needed computation and the server is a traditional von Neu-mann architecture-based commodity computer.

Second, it is assumed that the transparent client has no local large storage, such as hard disks. Hard disks are mechanical devices; they consume several tens per-cent power, generate noise and fragile to failures that result in program breakage or data losses. Thus, this as-sumption can reduce the cost and improve the system security.

Third, we assume there is strong network connection between the transparent client and server. This means that the network in transparent computing system can have enough capability and speed for timely transfer-ring instructions and data from servers to clients to sat-isfy the requirements of computation on clients. This assumption is realistic, since the modern network, espe-cially local area network has low latency and high band-width. Also, our experimental results have shown that a local Ethernet-based network can satisfy these require-ments.

Fourth, it is assumed that the transparent computing system is setup and maintained by professional sta.s, and can be trusted by users. When fetching instructions and data from these servers, users trust in these servers. Because the servers is commonly locked in a dedicated rooms and maintained by experts, they are more reliable and security, and thus can be trusted.
3.2. StoreVirt Model
The overview of StoreVirt model is illustrated in Fig-ure 1. As mentioned above, in a transparent comput-ing system, there are two roles of machines. One is the transparent client, which is a client device with local CPU, memories, and other related-devices, but with no large persistent storage of instructions and data, such as hard disks. The other is the transparent server, which is a commodity server computer and holds all the needed OS and application programs to run on the transparent clients, whose main function is to manage the program depositories and serve the clients?? requests of instruc-tions and data. Accordingly, there are also two parts of the StoreVirt model, i.e., StoreVirt client and server, which works on the transparent client and server, re-spectively.

As shown in Figure 2, the StoreVirt client consists of three components, including virtual disk (Vdisk) emu-lator, Cache manager, and Vstack module. The Vdisk

The StoreVirt server??s function is simpler to be de-scribed. It just listens, receives, and queues the requests from the StoreVirt clients via the server OS, handles them and then returns the corresponding results to the StoreVirt clients. For the virtual disk reading or writing, it .rst consults the relevant database, and decides where and how to handle the requests with the hard disks of transparent server via the .le system of the server OS. Next, we will discuss the relevant components and tech-niques in more details.
3.3. Virtual Disk and Access Method
The core idea of StoreVirt is the notion of virtual disks. From the perspective of a user or application, there is no di.erence in accessing data from Vdisks or local hard disks. However, Vdisk is just a virtualized logical disk device in transparent clients; its actual con-tents reside at the transparent server(s), and are fetched to the clients for execution on demand. To use the vir-tual disks whose contents are located on the transparent server, there are two set of access protocols needed in the StoreVirt model. The .rst set of protocols is con-cerned about how to access the contents of Vdisk before a client OS starts, termed as MRBP (Multi-OS Remote Booting Protocol). The second set is about how to ac-cess the Vdisk when the client OS runs after starting, termed as NSAP (Network Service Access Protocol).

In order to start an OS from the transparent server, the transparent client must read the OS instructions from the Vdisk images, instead of from hard disks as that in tra-ditional computers. First, the transparent client needs to establish a networking link to the transparent server, and then a virtual disk (through emulating the access inter-face of traditional hard disks for the OS bootstrap pro-gram). Second, the transparent client needs to discover the supported OSes, and then display the OS lists to end users for their selections. Third, after the user??s selec-tion, the Vdisk on the transparent client will be mapped to the dedicated Vdisk image that holds the correspond-ing OS instructions. Finally, the OS bootstrap program can read the OS instructions from the Vdisk as from a normal hard disk. To implement this set of protocols, it is needed to extend the traditional BIOS function [15].

However, after the client OS is booted up, the Vdisk access interface established through extending the BIOS function is to be disrupted in modern PCs (e.g., x86-based machines), due to the di.erent memory access method before and after the booting up of common OSes. Therefore, in order to continue providing in-structions and data after the OS initiates, the OS-speci.c StoreVirt client is to loaded and run as kernel services for streaming the OS instructions and data continually.

As mentioned above, a virtual disk request issued by the above OS or .le system will be intercepted by the StoreVirt client, speci.cally, .rst by the Vdisk driver, and then be changed into one or more NSAP packets that are sent to and responded from the remote trans-parent server. Thus, given each virtual disk request re-ceived from the .le system, the OS-speci.c Vdisk emu-lator will compose one or more remote disk requests in the format of NSAP to be sent to the server.

The .rst function of NSAP is to establish a unique connection between the Vdisk in transparent client and the Vdisk image in server side. Consequently, each client can maintain two request queues, one for the vir-tual disk requests received from the .le system, and the other for the remote disk requests to be sent to the server. The second function of NSAP is to deliver the instructions and data including OS codes from transpar-ent servers to clients or the computation results from transparent clients to servers. These transmissions oc-cur when interruptions or I/O requisitions are made in the transparent client.
3.4. Flexible Mapping from Virtual to Physical
As mentioned in last section, it is .rst needed to map a logical virtual disk in the transparent client to the physical hard disk (via Vdisk image) at the transparent server before the virtual disk can be accessed by users. In SotreVirt, there are two di.erent level mapping in es-tablishing such mapping relationships. The .rst level is to map the users?? virtual disk to its authorized Vdisk image on the transparent server; the second level is to map the logical blocks of Vdisk images to the physical blocks of hard disks of the transparent servers.

This corresponding relationship between the user??s Vdisk and Vdisk images can be expressed as a math-ematical mapping: f : VD ?? VDI, in which VD means the aggregate of Vdisks and VDI the aggregate of Vdisk images. Under the control of StoreVirt, even though the driver letters of the Vdisks accessed by di.erent users of transparent clients are the same, after being transformed by the StoreVirt, they can be mapped to the same or dif-ferent Vdisk images located on the transparent server.

Actually, there are two types of mapping from the user??s Vdisks to Vdisk images: one-to-one mapping and many-to-one mapping, as shown in Figures 3(1) and 3(2), respectively. The one-to-one mapping is mainly used for mapping to the Vdisk image that stores private user information or data, while the many-to-one map-ping is for mapping to the Vdisk image that is shared by multiple users. In fact, other corresponding relation-ships also exist from VD to VDI, such as one-to-many mapping. Although this is not a mapping relationship in mathematical term, it can be used to develop the con-current operation capability to the Vdisk.

At the second level, the occupation of Vdisk image resources can be described with di.erent storage gran-ularity, such as ??block?? of one data block or ??chunk?? of multiple blocks. The organization of its resources can be in the form of a table or a search tree. Di.erent re-source granularity and di.erent organization forms may lead to di.erent searching performance, which will in turn a.ect the overall read/write performance of Vdisk.

Figure 4 shows a table-based resource mapping of Vdisk images in a block granularity. In the resource table, each horizontal row demonstrates the mapping of a virtual block address (VBA) of virtual disk block to its physical block address (PBA), including the physical storage device (PSD) where the corresponding physical block locates. The number of items in the table is deter-mined by the number of logical blocks in a Vdisk image. We can see from this .gure that the Vdisk image shown here occupies the resources across two physical devices, namely, PSD1 and PSD2.

Obviously, the organization of Vdisk images?? re-sources in the table form is quite simple and easy to understand, but it may be less e.cient. In order to en-hance the searching e.ciency, the resources of Vdisk images can be organized in the form of a search tree or in other forms, such as a radix tree implemented in par-allax [16]. In a resource table in the form of a search tree, each leaf node on the search tree represents the PSD in which each real physical block corresponding to the virtual LBA is located, as well as the speci.c PLA of the physical block.

The .rst level mapping mechanism from Vdisks to Vdisk images provides a very .exible approach for soft-ware and data sharing through mapping di.erent users?? Vdisks to a same Vdisk image that contains the software or data to be shared. The second level of mapping from logical blocks of Vdisk images to the physical blocks of real hard disks also provides a mechanism for .exible resource management of Vdisk images and advanced features for reading or writing, for example, provid-ing concurrent reading/writing operations from/to dif-ferent servers through mapping di.erent ranges of vir-tual blocks to di.erent physical hard disks. We will il-lustrate the advantage of the .rst level mapping by sep-arating software and data below.
3.5. Software and data separation
To facilitate e.ective management of centralized Vdisk images and support heterogeneous OSes and ap-plications with reduced complexity, the StoreVirt clas-si.es Vdisks in the transparent client into four di.erent categories to enable sharing and isolation, based on the .exible mapping mechanism described in Section 3.4.

First, StoreVirt separates software from data based on the observation that many users will use the same OS and application software and thus can share them among users, while data are often user-speci.c and can-not be shared. Second, StoreVirt maintains a ??golden image?? of a clean system that contains the desired OS and a common set of applications. This ??golden image?? is thus immutable and can be shared by all transparent clients. However, some applications must write to the directories where they reside to function properly, e.g., creating temporary .les. To support these applications, StoreVirt adopts a copy-on-write (COW) approach by having a user-speci.c COW Vdisk image correspond-ing to the ??golden image?? for each client user. The COW operations can be implemented through a .le sys-tem redirector at the .le level or a block redirector at the block level.

The .le system redirector can be implemented on the transparent client, .lter the .le written operations and redirect them to the COW Vdisk or images. Of course, it also needs to carry out the reading operations by com-bining the contents of the original and COW Vdisk. The block redirector can be carried out by the transparent server and transparent to the transparent client and thus can alleviate the dependence on the client??s computation and the network delivery.

There are mainly four categories of Vdisks in Store-Virt:

System Vdisk: It is used to be mapped in a many-to-one mode to the ??golden image?? that stores the OS and application programs. The corresponding system Vdisk images are created by administrators and shared by all transparent clients. They can only be modi.ed by the administrators.

Shadow Vdisk: It is a user-speci.c COW Vdisk of the system Vdisk to enable write access to the System Vdisk contents. Each Shadow Vdisk is mapped to a user-speci.c Vdisk image in a one-to-one mode. The copy-on-write semantics can be supported at the gran-ularity of .les through a .le redirector, which is a .le system level software agent as mentioned before. When a user needs to modify a .le on the System Vdisk, a COW copy of the .le will be created on the shadow Vdisk for any subsequent access. The use of Shadow Vdisks is transparent to end users.

Pro.le Vdisk: Each client also has a Pro.le Vdisk to store user-speci.c persistent data such as customized user settings for OS and applications. Similar to Shadow Vdisks, the existence of Pro.le Vdisks is also transparent to end users.

User Vdisk: Each client has one or more User Vdisks that are used to store the private user data. Each Pro.le or User Vdisk will be mapped to a user-speci.c Vdisk image.

It is the classi.cation of Vdisks that greatly simpli-.es software management tasks, especially for system recovery. For example, if a transparent client is cor-rupted by accidental errors, software bugs, or malicious attacks such as viruses, worms, and spyware, system ad-ministrators can quickly clear the COW Vdisk contents to return a clean system image to users.
3.6. Virtual Network Stack
As discussed before, in StoreVirt model, the Vdisk emulator needs to summit the read/write requests to the remote StoreVirt server for further handling. Thus, the StoreVirt needs to share the underlying physical net-work with other regular OS components or applications. To implement this, we adopts a virtual network stack technique to multiplex and share the network between the StoreVirt and the normal TCP/IP stack in a client OS, as shown in Figure 5.

The virtual network stack implements the high and low-level network protocols needed to communicate with the StoreVirt server, speci.cally, NSAP and others. It receives the Vdisk access requests from the Vdisk em-ulator, interprets and encapsulates them in well-formed packets, and then delivers them to the virtual bridge.

The virtual bridge is the most important component to multiplex the underlying physical network. It binds to the network driver to receive every packet that the physical NIC has received. It then decides to route the packet to which above network stack. This decision can be made through using di.erent IP address between the virtual network and the TCP/IP stack or through di.er-ent UDP/TCP ports if needed.

It is should be noted that, with virtual network stack, other network functions can be implemented, such as .rewall, monitoring or auditing to improve the security of StoreVirt. But these are beyond the discussion of this paper.
3.7. Cache and Bu.er Management
Due to the extending of local I/O operations to net-worked I/O operations, the Vdisk I/O access path in-volves travelling from the transparent client, through network, and then to the transparent server, thus, the ac-cess performance of Vdisk will be a.ected by the con-ditions of the network and transparent server. To lower the dependence on network and reduce the number of requests for Vdisk I/O operations sent to the transpar-ent server, and thus reduce the corresponding response time, the cache manager bu.ers part of the response data. Similarly, to further reduce the operations to Vdisk images, a Vdisk image cache used to bu.er the Vdisk image status and relevant data can also be established in the transparent server.

The .rst function of the cache manager of StoreVirt client is to cache the request or response data from the client OS and the remote StoreVirt server, and thus re-ducing the I/O response time.

In case the requests sent from client OS are for data reading, the Vdisk emulator will .rst send the request to the cache manager for searching the local cache for the data requested. If it is found there, the cache man-ager will operate on the local cache and return the re-sults to the Vdisk driver. Otherwise, the cache manager will send the requests to the transparent server. Upon receipt of the results returned by the transparent server, the cache manager will parse the results and return them to Vdisk emulator in a form that can be understood by the latter. At the same time it will send the same results to the local cache so that relevant contents in the latter may be updated.

In case of requests for data writing, the Vdisk emula-tor will also .rst send the written requests to the cache manager. The cache manager will update the local cache with the written data and then send the written request to the StoreVirt server through NSAP. After getting the successful response from the transparent server, it de-livers it to the Vdisk emulator to indicate the written is completed.

In addition to cache the written results for succeeding reading operations, the cache manager can also prefetch some instructions or data in advance, thus reducing the response time of reading data sharply. However, this prefetching may bring waste of network bandwidth if the prefetched data is not needed in short time.
4. Implementation and Deployment Experiences
We have implemented a prototype of StoreVirt that supports both Windows 2000/XP and RedFlag Linux Desktop 6.0 (Linux kernel 2.6) [17]. Our implemen-tation of MRBP is based on the Intel PXE protocol [18] for sending boot requests. The implementation of NSAP is based on the UDP [19]. Because device drivers are platform dependent, we implemented two di.erent Vdisk emulators, customized for Windows and Linux, respectively. The Vdisk emulator is implemented as a SCSI port device driver at the block level. The cache manager is integrated within the Vdisk driver. We have implemented the Vstack module as a .lter intermediate driver, which binds to the network miniport driver.

The implementations are in C++. Since Windows XP is a modi.ed microkernel, we modi.ed the correspond-ing Windows Registry .les for the OS to load these added drivers. Thus there is no need to change or re-compile the kernel. However, since Linux is a mono-lithic kernel, we compiled the Vdisk and Vstack drivers into the kernel by modifying the related kernel source code before recompilation.

The technology of StoreVirt has been transferred to companies for industrial products. These systems based on StoreVirt have been deployed across many univer-sities, enterprises, and other organizations for daily us-ages.

Take the typical deployment for an interactive En-glish learning class as an example, the transparent clients are Intel Atom 1.60GHz machines, each with 512 MB DDR2 666 MHz RAM and 100 Mbps onboard network card. The server is a Dell PowerEdge 840 ma-chine with an Intel Xeon Dual Core 1.6GHz CPU, 2 GB DDR2 333 MHz RAM, a 1 Gbps network card, and a 160 GB Samsung He160hj 7200rpm SATA hard disk. The clients and the server are connected by an Ether-net switch with 48 100Mbps interfaces (used for clients) and two 1 Gbps interfaces (used for the server). The server OS is Windows 2003 Standard(SP2). The trans-parent clients use Windows XP Professional (SP3).

These real deployed systems have been observed to run stably most of time and have achieved at least the following bene.ts:

Reduced system maintenance time: Previously, ad-ministrators spent on average one or at least a half of day a week to regularly clear every machine even with the help of automatic tools to .x problems caused by user faults or malicious attacks. Using StoreVirt, the system cleaning and upgrading time is reduced to 30 minutes per week, due to both the reduced number of malicious attacks and the centralized operations.

Improved availability and usability: Before using StoreVirt, the 4-8 hour system maintenance took place every week. No class can be arranged to use the class-room during this maintenance day. After deploying StoreVirt, the classroom can be used everyday without weekly service interruption.

Improved security: After deploying the transparent computing system, there have been less reported viruses or worms than before. Even with errors, the transparent system resumed operations quickly.
5. Experimental Evaluation
In this section, we will evaluate the StoreVirt in Win-dows XP with several experiments. We evaluated the storage virtualization performance in disk and .le sys-tem levels and compared with other popular approaches.
5.1. Experiment Setup
In our experiments, we used the same hardware con-.gurations as our real deployment but with a more pow-erful server of Dell PowerEdge 1900 machine. It is con-.gured with an Intel Xeon Quad Core 1.6 GHz CPU, 4 GB Dual DDR2 666 MHz RAM, one 160 GB Hi-tachi 15000rpm SATA hard disk, and a 1 Gbps onboard network card. We also compared the StoreVirt perfor-mance with a regular PC, which has the same hard-ware con.gurations but with an additional local hard disk (80 GB Seagate Barracuda 7200rpm SATA), and a virtual machine that emulates the VM-based like ap-proaches, which is virtualized as with 512 MB memory and a static 8 GB SCSI hard disk using VMWare Work-station 6.5 hosted by Windows XP Professional (SP3) with NTFS V3.1 .le system on the the same regular PC hardware (but with 1GB physical memory, a half of it is used by the Host OS). The server OS of StoreVirt is Windows 2003 Enterprise (SP2) running a NTFS v3.1 .le system. The StoreVirt clients, the regular PC and virtual machine all use Windows XP Professional (SP3) with NTFS v3.1 .le system.
5.2. Vdisk Access Performance
We .rst evaluate the Vdisk access performance in terms of throughput in a single transparent client setup. The experiment is carried out by using the Iometer tool [20] to submit random disk access requests of dif-ferent size to the machine, with the .lesystem caches disabled.

The results shown in Figures 6 and 7 are the aver-age of .ve trials. Because the standard deviations are small (less than 10%), they are not plotted here. As mentioned above, we also compare the throughput with that of a regular PC??s local hard disk and virtual ma-chine??s virtualized hard disk. As seen from Figure 6, for read access, the Vdisk throughput in StoreVirt in-creases with the request size and is higher than the lo-cal disk, but decreasing when the request size is larger than 64KB, which is the maximum size delivered by one NSAP service. When the request size is larger, the net-work communication dominates the latency, for that a large request size will cause several service requests. At the same time, because the response in StoreVirt can be satis.ed with the server??s memory cache, the Vdisk per-formance is higher than local disk when the request size is small. The write access shown in Figure 7 is simi-lar to that of the read access, but decreasing at the size of 32KB, which is also the maximum size delivered by NSAP writing service. Note that the throughput of write access is bigger than read access in all cases, this may be due to that the embedded hardware cache of hard disk or the server cache of StoreVirt server returns the success without carrying the real disk operations.
5.3. File System Performance
In this section, we evaluate the overall .le system per-formance of a StoreVirt client, using a modi.ed Andrew benchmark [21]. We compared the performance against the .le system performance of the regular PC with a lo-cal disk, the Common Internet File System (CIFS) [22], and the virtual machine in the VM-based approaches. For CIFS, we used the same PC and the same Store-Virt server hardware con.guration. In our benchmark, we used the Windows Apache 2.0.53 source tree. This source tree has 39.3 MB data before compilation, and 42 MB data after compilation. Table 1 shows the average performance over .ve runs. For each run, we rebooted both the client and the server to clean various caches.

We observe that StoreVirt achieves a little better per-formance than regular PC in the ??mkdir??, ??scan dir??, and ??cat?? phases, which is aligned with the better Vdisk accessing performance. However, the StoreVirt perfor-mance in ??cp?? and ??make?? phases is a little worse than the regular PC. In StoreVirt, these phases may require accessing continuous blocks of large size, resulting in a large number of remote disk requests and thus involving much CPU and communication overhead. Even though, the StoreVirt performance is much better than the CIFS and virtual machine.

Our .le system performance evaluation shows that, by using a more powerful server and fast network ac-cess, StoreVirt can achieve comparable .le access per-formance to a regular PC, and can potentially perform better than other remote .le system solutions and VM-based approaches and systems.
6. Conclusions
We introduced a novel computing paradigm, trans-parent computing, which tries to solve the challenges faced by current computing systems based on a spatio-temporally extended von Neumann architecture by sep-arating the tight-coupled computation and storage in the past. To realize transparent computing system, we have developed StoreVirt, which stores all data and soft-ware on virtual disks that correspond to disk images lo-cated on a centralized server with a storage virtualiza-tion mechanism.

We have given real usage experiences and carried out several experiments to evaluate StoreVirt. We show that with a powerful server, StoreVirt can achieve compara-ble or even better disk and .lesystem performance than regular PCs with local hard disks, networked .le system and VM-based approaches.

Future work includes further optimizing perfor-mance, enhancing the system security, and supporting more types of computing devices, such as routers, smart phones, digital appliances, etc.
References
1. Y. X. Zhang, Y. Z. Zhou, Transparent Computing: A new Paradigm for Pervasive Computing, in: Proc. of Third Interna-tional Conference on Ubiquitous Intelligence and Computing, 2006.

2. Y. Z. Zhou, Y. X. Zhang, Transparent Computing: Concepts, Architecture, and Implementation, Cengage Learning Asia Pte Ltd, 2009.

3. G. A. Gibson, R. Y. Meter, Network Attached Storage Architec-ture, Communications of the ACM 43(11) (2000) 37?C45.

4. J. Tate, F. Lucchese, R. Moore, Introduction to Storage Area Networks, IBM Redbooks (2006).

5. J. Sugerman, G. Venkitachalam, B.-H. Lim, Virtualizing i/o de-vices on vmware workstations hosted virtual machine monitor, in: Proceedings of the 2001 USENIX Annual Technical Confer-ence, 2001, pp. 1?C14.

6. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. War.eld, Xen and the art of virtual-ization, in: SOSP ??03: Proceedings of the nineteenth ACM sym-posium on Operating systems principles, 2003, pp. 164?C177.

7. W. Vogels, Beyond server consolidation, Queue 6 (1) (2008) 20?C 26.

8. K. L. Kroeker, The evolution of virtualization, Communications of the ACM 52 (3) (2009) 18?C20.

9. Y. Wang, E. Keller, B. Biskeborn, J. E. van der Merwe, J. Rex-ford, Virtual routers on the move: live router migration as a network-management primitive., in: Proc. of SIGCOMM, 2008, pp. 231?C242.

10. T. Anderson, L. Peterson, S. Shenker, J. Turner, Overcoming the internet impasse through virtualization, IEEE Computer 38 (4) (2005) 34?C41.

11. G. Boss, P. Malladi, D. Quan, L. Legregni, H. Hall, Cloud Com-puting, IBM White Paper (2007).

12. I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid 