The deployment of wireless sensor

Abstract
The deployment of wireless sensor networks is highly dependent on the given application. In fact it depends on the environment characteristics, the available budget and the type and desired quality of service. Since making real tests is most of the times costly and time consuming, researchers and developers usually use simulation tools in order to simulate the behaviour of the network under particular conditions and in different scenarios. In order to make the available simulators suitable for the targeted application, users usually customize the source code by modifying it or adding other modules into it. This task is time consuming and complicated especially if the simulator is customized for the first time and if there is many dependencies between different units. This paper presents the performances and the features of a graphical user interface of an easy to use simulator for wireless sensor networks lifetime estimation.

Keywords: Wireless sensor networks, simulator, graphical user interface, lifetime estimation.
1 Introduction
Wireless sensor networks have been used widely in several applications involving surveillance, monitoring and tracking mainly because of cost-effectiveness, simplicity and reliability of the technologies used for this kind of networks. However this kind of networks is most of the time limited in resources (e.g. energy, memory, computing power) [1]. Therefore the challenge faced while designing such networks is first of all power consumption under low computing power and small memory constraints. Optimizing power consumption makes the network operational as long as possible. These characteristics result in a considerable difficulty in analyzing the behaviour of this kind of networks, which leads to the need of an accurate and reliable simulation tool. Moreover making the simulator as easy to use as any common software constitutes a serious advantage, especially for non programmers who are deploying one of the ready to use wireless sensor networks available in the market.

The proposed simulator is designed exclusively for wireless sensor networks. Thus, special attention has been given to the particularities of these networks, such as limited energy resources. While developed under Windows, the project is portable to other platforms such as Linux and Mac. In fact it is written in C# using the .NET Framework 3.5 which is portable and compliable under Linux and Mac using open source compilers such as Mono [2].

The primary characteristics of the developed simulator could be summarized in the following qualities:
· Accurately simulating the behaviour of real sensor nodes i.e. the impact of network size, intense usage of radio and CPU resources on the battery life and thus on the lifetime of the whole network.

· Generate results based on different executions representing different scenarios.

· Enabling researchers to focus on particular research and development aspects such as sensor node distribution and wireless sensor networks lifetime estimation.

· Representing each and every node by its own resources and simulating of its behaviour is executed in a separate thread.

· Flexible design enabling its customization by any researcher familiar with object oriented programming in order to meet his specific needs.

· Simple and intuitive user interface to make the use of the simulator possible by any average user.
This paper presents the key elements of the simulator, its benefits, its performances and the improvements that could be made to reach better performances.
2 Related work
Several network simulators have been made available since the early 90s [3]. The complexity of the new generations of networks led to the development of network simulators, gradually aborting the analytical approaches. With the emergence of wireless sensor networks, which are hard to analyze theoretically, it became even harder to obtain accurate results only by means of physical experiments and measurements. Thereby, the trend was to consider using simulators or combining experimental measurements with simulations as the best way to analyze the behavior of such networks [3,4]. The reader will find below a representative list of simulation tools for wireless sensor networks.
2.1 NS-2 and NS-3
One of the most used network simulators is NS-2[5,6], written in C++ and OTcl, which has been used since 1990. A very large number of simulations in the literature have been conducted by using NS-2. Although this simulator has a very rich collection of network protocols especially for IP networks, it is not very suitable for wireless sensor networks simulations. In fact, references [6,7] pointed out that NS-2 has trouble simulating large wireless sensor networks. In addition, Reference [8] emphasized that despite its high performance and its efficiency in understanding the behavior of network protocols, NS-2 is less efficient for end point nodes. As a consequence, NS-3 has been developed in 2007 [9]. The main goals of NS-3 were to improve the scalability of the simulator and its performance in terms of resources consumption (i.e. memory, CPU). Moreover NS-3 supports parallel and distributed processing according to its developers [10].
2.2 OMNET++
Another well known tool is OMNET++ [11,12], a project that started in 1993 and since has been continuously evaluated and improved. OMNET++ was not initially designed to be a network simulator. In fact it is a general purpose discrete event simulation framework. Thus it include several simulation models, 43 during the elaboration of this work. This framework, fitted well with the mobility framework [13] and Castalia [14] simulation models, became itself a wireless sensor networks simulator. A comparative performance study of OMNET++ versus NS-2 and NS-3 showed that OMNET++ memory usage and simulation runtime is better than that of NS-2 but not of NS-3 [15].
2.3 SENSE
Also known as Sensor Network Simulator and Emulator, SENSE is a component based wireless sensor network simulator [3,4]. Its main features are extensibility, reusability and scalability. Unlike other simulators, SENSE uses a so called "component-port model that frees simulation models from interdependency usually found in an abject-oriented architecture" [3]. Moreover, in this simulator, the parallel simulation capability is offered to the user as an option to meet the requirements of a maximum of users.
2.4 TOSSIM
Several wireless sensor networks use motes that run TinyOS [16] which is an operating system designed for wireless motes. Therefore TOSSIM [8], a TinyOS motes simulator, has been developed. It is aimed for wireless sensor networks composed exclusively from nodes running TinyOS. Thus it compiles directly from TinyOS source code. The main feature of TOSSIM is its capability of simulating the entire network at bit-level giving more accurate description of the network behavior [8]. In addition, TOSSIM offers the possibility of directly deploying tested code on the real motes without any changes, therefore simplifying the development of wireless sensor networks based on TinyOS.
2.5 JSim
Another fairly well known simulator is JSim [17], which is fully written in Java. This simulator has the advantage to be portable, but since it has not been primarily designed for wireless sensor networks, it has the same weak points of NS-2 when simulating large wireless sensor networks [7].
2.6 Ptolemy
Also written in Java, Ptolemy [18] is a discrete event simulator and a design tool of concurrent, real time, embedded systems. It could be used to simulate wireless sensor networks. In fact VisualSense [18], which is a framework built on top of Ptolemy, is intended to assist researchers in the design, visualization and simulation of wireless sensor networks. In VisualSence sensor nodes could be defined using either the discrete event blocks or the continuous time and real time blocks available on Ptolemy. In addition, the sensor nodes could also be written in Java to meet specific needs.
2.7 WSNSim
Another less known simulator is WSNSim [7] which is a simulator that was specifically designed for wireless sensor networks and benefits from the richness of the .Net framework 3.5 and from the portability of the C# language. It's a graphical interface based simulator that deals with particular sector of wireless sensor network development such as sensor nodes distribution, routing protocols and clustering.
3 Design approach
The design approach of the present work takes into consideration the implementation, usage and the improvements stages.
3.1 The implementation
The implementation of the proposed solution is based on two essential practices namely the test driven development and the continuous integration.
3.1.1 Test driven development
The quality control of the developed software is traditionally performed at the end of the implementation process. This means deploying significant efforts to make sure that the product has no defects. By systematically testing each newly implemented portion, this effort could be dramatically reduced.
3.1.2 Continuous integration
It consists in always starting with a simple and functional code, and then gradually expending it in accordance with the specifications and the needs identified by the developer. This makes the systematic testing easier so that errors arise systematically and could be corrected immediately.

The adoption of these two rules enabled rapidly delivering a reliable product with minimum efforts.
3.2 The usage
As the targeted simulator is dedicated for researchers as well as for average users (e.g. network builders, final systems users), the developed solution has to be first of all easy to use. In fact, for an average user executing simulations would consist in merely selecting the appropriate option and fill the right data collected from the experiments. Thus to be able to execute a simulation, most of the users do not need any programming skills since they are not concerned by modifying the source code to meet their requirements or by reusing it in other projects. In addition, having an intuitive, a handy graphical interface would certainly make the simulation easier so that the researchers could focus more on other deployments tasks.
3.3 Reusability and extensibility
The simulator is composed of independent units. Each unit provides, with its own resources, a full service to the other ones. The advantages of such architecture are the ease in the design and the ease of modifications. Thus, the source code could be easily reused in other projects and extended to meet specific needs. Moreover changes on any unit are possible without modifying any other one and do not affect the system operation.
4 implementation
Accurately simulating the behaviour of sensor nodes in a wireless sensor network is not limited to merely simulating the data exchange between nodes. The calculation of the power consumption depending on the radio usage, the sensor nodes location, the external sensors and the processing unit is crucial information for wireless sensor network deployment. The primary goal of this simulator is to assist networks deployers and wireless sensor networks applications developers to understand the behaviour of the whole network and especially to estimate the lifetime of the network for different deployments.
4.1 Simulation engine
The simulation engine simulates each node in a distinct thread so that the behaviour of every node is simulated separately and simultaneously with all the other nodes. This has the advantage of being a more realistic simulation since in the real world every node is fully independent from all the other nodes while interacting with its neighbours. In addition, this characteristic made the simulator ready for further implementation of distributed simulations. The main drawback of such implementation is that it brings an additional complexity since it implies inevitably the synchronisation of numerous threads.

Figure 1. States that could take each sensor node in the simulation.

The behaviour of each node is event based. In other terms, every node is driven by events raised either periodically or depending on the user's choices before the beginning of the simulation. Each node has several states. The transitions between states are amerced by specific events. This is depicted in Figure 1.
4.2 Simulation models
From a hardware point of view a sensor node contains a radio module, a CPU, one or more external sensors and a battery. Figure 2 depicts an example of a sensor node and shows the connection between its units.

Figure 2. Architecture of a sample sensor node.

An equivalent model of the hardware design shown in Figure 2 has to be implemented. In order to make the simulator suitable for different types of sensor nodes and different types of wireless sensor networks, the sensor model must be generic and as flexible as possible. Therefore, a sensor node is divided into two main components, i.e. algorithmic or functional model and resources model. The functional model mainly simulates the sensing and networking capabilities of the node while the resources model simulates the power consumption. (The memory and CPU usage are not simulated but the power consumption resulting from the CPU usage is considered in the power model). Consequently the resources model is reduced to the battery model. The figure 3 depicts the two main components of the sensor node model.

Figure 3. Sensor node model.

The power consumption of a specific sensor node depends on its status (receive, transmit, sleep, shut down ...). On operating time a node may switch between different states depending on the task performed. Measures of the power consumption at different status could be used to accurately construct models that could be used to estimates the whole network lifetime
4.2.1 Hypotheses
The simulation is executed with the following hypothesis:
· The simulated sensor nodes are motionless.

· The routing protocol simulated is not a power aware routing protocol.

· The packet loss and collisions as well as the channel access methods are not simulated.

· The current variation effect on the battery lifetime during the operation is not considered.
4.2.2 Functional model
This model treats the network and the sensing capabilities of the sensor node. The functional model should be completed with results from experiments carried out to measure the power consumption of a particular type of wireless module, microcontroller and external sensors. Note that any other wireless modules, microcontrollers and sensors could be used after measuring their power consumption during different operations.

The routing is based on a simplified version of the Ad-hoc On-demand Distance Vector (AODV) routing protocol which explore the network once. It does not re-explore it later for possible routing updates during the systems lifetime. In fact the routes are established before any packet is relayed and do not change. Although being simplistic this kind of routing is adequate for simulations where sensor nodes are static.
4.2.3 Battery model
The battery model adopted is a linear model. This model neglects the discharge rate of the battery. Such a model facilitates the examination of the power efficiency of the application. The capacity in Ampere-hour (Ah) is expressed by the following equation:
4.3 Graphical user interface
The simulator provides a graphical user interface. This allows the user to create the sensor network while viewing its distribution.

As shown in Figure 4 the interface is fairly simple and allows the user to drop sensor nodes on the map. More over the simulator assists the user by testing the network connections while dropping the nodes. The graphical user interface also allows the user to enter the data, collected from the experimental measurement, and continuously displays the time taken per test run as well as the estimated lifetime and the remaining power, not only for the whole network but also for each node.
5 performence evaluation
This section discusses the performance of the simulator, namely the memory usage as well as the simulation time, for different network sizes. For these tests, a computer equipped with an Intel Core 2 Duo 2x2.1 GHz CPU has been used with a 4 GB RAM and running under Windows Vista 64bits. Eight simulations have been executed with network sizes varying from 2 to 100. In each simulation the duration as well as the memory usage had been recorded.
5.1 Simulation time
The simulation time varied for the eight tests from 7 seconds for a network composed of two nodes to 2823 seconds for a one hundred nodes network. Figure 5 describes the simulation time evolution with the network size.

This curve shows that the simulation time increases almost linearly with the network size. This linearity enables acceptable simulation time for large networks although the networking tasks performed by each node grow exponentially with the network size.
5.2 Memory usage
The memory usage of the simulator varies for the eight tests between 12732 and 20140 KB respectively for 2 and 100 nodes. The curve in Figure 6 depicts the variation of the memory usage of the simulator with the network size.

Unlike the simulation time, the simulator memory usage described by this curve does not vary in a linear manner. In fact, the memory usage grows exponentially until networks with about 20 nodes consuming 17740 KB. For larger networks the memory usage grows in a logarithmic manner and is almost constant at 20000KB for networks including between 50 and 100 nodes. This is an excellent characteristic that helps simulate large networks.
6 conclusions and future work
In this paper, a wireless sensor network simulator was presented. Particular attention was given to lifetime estimation based on simplistic power and functional models. This allows researchers and wireless sensor networks developers to focus on particular aspects such as sensor nodes distribution and wireless sensor networks lifetime estimation. Moreover, the parallel processing capability presents an important feature for further distributed simulations. In addition, the simulator need in terms of processing resources and memory as well as the execution time taken by test are encouraging. Furthermore, the intuitive and convivial user interface makes the simulator accessible for the average users while being flexible and scalable for improvements for advanced users. As a whole, we can affirm that this simulator could be a basis for a more powerful simulator that benefits from the richness of the .NET Framework 3.5.

Several enhancements could be thought of to improve the simulator. In fact, the modeling of the radio model in terms of propagation interferences and power loss could make the simulator less dependent on experimental measurements. In addition, the modeling of the MAC layer and the modeling of the channel access methods as well as the simulations of collisions could provide a better understanding of the network behavior under different conditions. Moreover, the implementation of other routing protocols designed for wireless sensor networks would make the simulator an excellent tool to compare and validate routing protocols. This could be achieved thanks to the scalability and the flexibility of the presented simulator.
References
1. Mark Halpern, Wanzhi Qiu, Khusro Saleem and Stan Skafidas. 2007. Sensor Networks and Configuration, Fundamentals, Standards, Platforms and applications. Springer-Verlag Berlin Heidelberg.

2. Mono [online]. www.mono-project.com.

3. B.K. Szymanski and G.G. Chen. 2007. 'Sensor Network Component Based Simulator'. Handbook of Dynamic System Modeling, 35:1-16.

4. Chen, G., J. Branch, M. J. Pflug, L. Zhu and B. Szymanski. 2004. 'SENSE: A Sensor Network Simulator'. Advances in Pervasive Computing and Networking, 249-267.

5. S-2 [online]. www.isi.edu/nsnam/ns/.

6. I. Downard. 2004. 'Simulating sensor networks in ns-2'. Naval Research Laboratory, NRL Formal Report. 5522-04-10.

7. Sourendra Nath Sinha, Zenon Chaczko, Ryszard Klempous. 2009. 'SNIPER: A Wireless Sensor Network Simulator'. EUROCAST 2009: 913-920

8. P. Levis, N. Lee, M. Welsh, and D. Culler. 2003. 'TOSSIM: accurate and scalable simulation of entire TinyOS applications'. Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems SENSYS 2003.

9. NS-3 [online]. www.nsnam.org

10. Thomas R. Henderson, Sumit Roy, Sally Floyd and George F. Riley. 2006. 'ns3-Project Goals'. Workshop on ns-2: the IP network simulator.

11. Pongor Gyrgy. 1993. 'OMNeT: Objective Modular Network Testbed'. Proceedings of the International Workshop on Modeling, Analysis, and Simulation On Computer and Telecommunication Systems. MASCOTS '93: 323--326.

12. Varga, A. 1999. 'Using the OMNeT++ discrete event simulation system in education'. IEEE Transactions on Education. 42: 4-11.

13. Drytkiewicz, W, Sroka, S, Handziski, V, Koepke, A and Karl, H. 2003. 'A mobility framework for OMNeT++'. 3rd International OMNeT++ Workshop.

14. Boulis, Athanassios 2007. 'Castalia: revealing pitfalls in designing distributed algorithms in WSN'. Proceedings of the 5th international conference on Embedded networked sensor systems. SenSys '07: 407-408.

15. Weingrtner, Elias, vom Lehn, Hendrik and Wehrle, Klaus. 2009. 'A performance comparison of recent network simulators'. IEEE International Conference on Communications. ICC 2009.

16. TinyOS [online]. www.tinyos.net.

17. J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao. 1997. 'JSIM: a Java based simulation and animation environment'. Proceedings of the 30th Annual Simulation Symposium. 31-42.

18. P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao. 2004. 'Modeling of Sensor Nets in Ptolemy II'. Proceedings of Information Processing in Sensor Networks. IPSN:359-368.

