Software Testing Tools

Introduction
The use of software testing tools can dramatically simplify testing, minimize the risk of defects and achieve a high quality and reliability of the developed solutions making them more productive and effective. There is a wide variety of computer aided testing tools that address many aspects of the testing process; they can be applied to different types of software, different programming languages, and provide different types of testing. The scope and quality of such tools vary widely and provide varying degrees of assistance. Many of the tools can be tried out these days with no commitment and be downloaded free of charge or you can choose to purchase a licensed version. However, you should remember that the value of testing tools depends on the extent of their standard measurements and how the tools can address some of the testing problems. Besides, the testing tools should fit and improve existing business process, but they should not force the process to change if it can't be changed.
Types of Software Testing Tools
Basically, software testing tools can be categorized by the testing activity or the process they are utilized in, e.g. test planning, test execution, data comparison, defect capture, etc.

The tools can be divided into the following categories:
· Source Code testing tools (AdaTEST, AQtime, BoundsChecker, CMT++, CodeCheck, CodeWizard, GlowCode, OSPC, Panorama, TBGEN)

· Functional testing tools (.TEST, AberroTest, Automate!Test Manager, CitraTest, Eggplant, GUITAR, QACenter, Silktest, TestComplete, WinRunner)

· Performance testing tools (BugTimer, LoadRunner, Monitor Master, SilkPerformer, TestLoad, WinFeedback, XtremeLoad)

· Java testing tools (Abbot, AgileTest, Agitator, Cactus, GJ-Coverage, JCover, JMeter, JUnit, Marathon, QEngine, TCAT/Java)

· Embedded software testing tools (Message Magic, Reactis Tester, TBrun, Tessy, TestQuest Pro, USBTester, VectorCAST)

· Database testing tools (AETG, Data Generator, Datatect, ER/Datagen, Jumpstart, SQL DB Validator, TestIt!, TurboData)

· Bug tracking tools (Bugzilla, DevTrack, Dragonfly, Footprints, Mantis, Perfect Tracker, QEngine, Squish, TrackStudio)

· Test management tools (ApTest Manager, Extended Test Plan, QADirector, SilkPlan Pro, TestLog)
Staying familiar and up to date with testing tools will help you with the following:
· people in your team will appreciate good recommendations on the improvement of software conformance and its general performance as it will help your team to decrease the development time and the software product's cost;

· you could become the teams tools researcher and provide qualified software testing services;

· knowledge about the latest innovations and improvements in testing tools will help with interviews when applying to new jobs.
As a conclusion, we can say that improved tools that use the latest techniques in software testing cannot only increase team motivation, but also increase the value of software in a number of ways: 1) reduce the cost of software development and testing; 2) reduce the time spent on the development of new software products; 3) improve the software performance, conformance to specifications or standards, and interoperability with other software and hardware.
What Should Be Automated?
Before you deploy any application, it must be thoroughly tested. This can be a very complex, expensive and time-consuming task for any developer, especially when software system environments are enlarged and new sophisticated algorithms are applied into software development. Besides, the complexity of development process and its technologies change rapidly and you should keep pace with them. The main problem for software developers today is a lack of scheduled, automated testing procedures. This can be solved by automated software testing tools that can capture, verify, and replay user interactions in an automatic mode and defects can be identified without having to spend much time and energy on their search. This ensures that business processes that span across multiple applications and databases work flawlessly and remain stable.

When you ask yourself: "what process should be automated", you must first get an answer to this question: "is it appropriate to automate the software testing for this exact project?". If the answer is "YES", a schedule must be drawn and all automated tests will be done according to this schedule. We won't go into details about how to automate this or that function; let's just list the processes where automation testing is the most practical:
1. Tasks involving consistency and/or repeatability;

2. Hard-to-reach processes in the system (back-end processes, files logging, recording to database);

3. Such routine tasks as data search (forms with a big number of input fields, where fields are automatically input with different data and are validated once saved)

4. Validation messages (when fields are input with incorrect data and are checked for this or that validation)

5. Lengthy end-to-end scenarios

6. Testing the data that requires dead reckoning or exact mathematic calculations

7. Testing data search correctness
Much more processes can be automated, but this depends on the requirements of the system under tests and capabilities of the testing tool you selected.

