Software Design

Human Computer Interaction

Literary Review on: Bringing Design to Software
“Bringing Design to Software” is a book written by Terry Winograd. He is currently a professor in Computer Science at Stanford University. He is also a member of the advisory board of Association for Software design, the editorial board of Human Computer Interaction and the national board of Computer Professionals for Social Responsibility. The aim of this book is to teach people how to create software that is works by making it both appropriate and effective to its users. It also tackles the improvement of software design, by adopting lessons from other areas of design, to the development of software.
Software Design

What is Software Design?
Terry Winogard classifies design as ambiguous, but among its different meanings, one can find a common ground, which is the art of linking the designer's ideas and intentions to the final product being created. In the introduction of this book, the featured authors claim that looking for the definition of design would only leave you more confused. They believe although design is classified as a noun, it should not be seen as a thing but rather be seen as an activity. Hence to define what design is, the authors provided what people do when they design as its definition. Some of their contributions are: design is conscious, design keeps human concern in its centre, it's a conversation with materials, its creative, design is communication, design has social consequences and design is also a social activity.
Software design versus Software Engineering
Most people confuse software design for software engineering. The book tries to differentiate them by comparing them to architecture and engineering. The architect's role is similar to that of the software designer's role whiles that of the software engineer is likened to that of the engineer. Even though both disciplines work together to put up a building, they play different roles. The engineer takes instructions from the architect on how the building should be designed and the engineer then implements this design. In the initial stage of the building, the client goes to the architect first because the architect has the ideas of how to make a good building. This is similar to the software industry. This is because, the software designer knows how to blend the various components and elements of the application to meet the user needs and produce a good user experience. The software engineer is rather involved with the algorithms and the procedures involved in making the product work.
Progress of Software design
In chapter one the book talks about Mitchell Kapor, who was one of the first people in the microcomputer industry that described his work as software design. Kapor worked on the Lotus 1-2-3 in the early 1980's, where he designed the interactions of the program by working closely with Jonathan Sachs who was a skilled programmer. Mithell kapor argues that although the personal computer has been a great success, users experience difficulty when they use computers too often and the barriers that limit most people when they use computers suggests that the overall ambition of computers has not yet succeeded. He argues that there is a conspiracy of silence on the usability of computers; hence companies tend to standardize their platforms, applications, methods of connectivity instead of focusing on simplifying the user experience. He also blames users for this problem. This is because instead of complaining about this matter, they rather keep quiet because they feel embarrassed about the finding the device hard to use. He believes that the lack of usability and poor design of programs are the secret shame of the computer industry.
Training software designers
In chapter three, Crampton Smith and Tabor talk about how today's software designers need to be able to predict and control how users react to a piece of software. This is due to the users' environment which keeps on changing from time to time. They therefore believe that software designers should be trained on some principles to enable them cope with the user demands. The first principle is invention. This deals with creativity, innovation and thinking outside the box to bring about new forms for old and new purposes. Empathy is the second principle. This is the act of putting yourself in the users' shoes and picturing how they would think and their characteristics. This would enable the software designer, be able to predict how the user would react when using the software. Evaluation is also another principle which involves calculating the incommensurable factors such as speed versus aesthetics. For example, a designer would think about whether to use Flash to beautify his website or go with a more simple design which would increase the website's speed when opening it. The last principle is visualisation and representation. This involves creating objects, ideas, processes, structures and scenarios with our imagination and communicating them to other team members, users and clients.
Role of Users in Software Design

Users' choice (Usability vs functionality)
Chapter five features Paul Saffo, who started off as a lawyer specializing in technology law. He spent most of his free time as a software designer because he decided that technology was more fun. His greatest achievement is the analysis of the current and future developments of cyberspace; the networked communication, computing and information world. He argues that customers have a high liking for high-tech products but designers seem to praise “user friendliness” as a success factor. He believes that looking at the past 2 decades of success and failures of some products tells a different story. This is because there are a lot of products that flopped in the market due to its poor usability designs. For example voice controlled telephones and smart appliances. There are also several examples of complicated or high tech products that were not “user friendly” but were a great success on the market. Consumers had no clue how to use most of its functions. One of the examples Paul Saffo talks about is the personal Computer with the DOS operating System. The DOS operating system was noted for its poor usability but was able to survive in the market. Paulo Saffo believes the success of these high-tech devices was due to the adaptability nature of the users. This is because, even though it was difficult to use, the users learnt how to use it till they got familiar with its operation. This is one of the main factors that has made some of the “high-tech” products succeed in the market.
User Centred Approaches to Software Design
In chapter six, Peter Denning and Pamela Dargan describe software design as the aspect of software development that deals with the form and function of a software system and with the structure of the process that produces that system.[1] They classified the approach to software design into two. These are software engineering approach and the Human centred design approach. The software engineering approach is defined by the authors as using engineering tradition which sees design as a formal process where specifications are defined and the system is derived from them. Human approach involves the designers putting themselves in everyday routines, complaints and concerns of their customers.

The software engineering approach works with three main assumptions. The first of them is that, the result of a design is a product. The second assumption is that, the product is gotten from the specifications given by the customer. The last assumption is that there is little need for the customer and designer to be in contact when they have agreed on the specification. On the other hand, human centred approach also operates on three different assumptions. These are that, a satisfied customer is a product of a good design. Secondly, the design of a product is done by designer and the customer working hand in hand. This makes the design an iterative process, where the design keeps on evolving to meet the customer's needs. The last assumption is that the customer and the designer are in constant communication. These two approaches could be brought together to form a new approach called software architecture. In software design, the user is an integral part of the design process. The user plays a major role in each approach to software design; this is because the success of a product is measured according to its demand by users. This is why software designers have decided to take the Human centred approach.
Stages in Software design

Conceptual Model
David Liddle is the featured author in chapter Two. In this chapter, he talks about how the conceptual model aided him design the Star System. The Star System was one of the leading predecessors of today's Graphic User Interfaces. During his time, there were no personal computers. The computers at that time employed the distributed model system where users had to share processor time. Xerox decided to create a personal computer which would be self-contained and be connected to a laser printer. In May 1981, the 8010 Star was released.” It was the first graphical, bitmap-display, iconic user-interface product”[2].

David Liddle admitted that they used a different approach to create this software at that time. It involved a study that lead to the documentation of the methodology to design of the user interface. This led to task analysis such as, looking at the range of users which would use the product. The next step was creating scenarios of people using the imaginary product. They then created a model of the graphic user interface which had three aspects. These are the information which was going to be displayed, the control of the device and finally the user's conceptual model.David Liddle described the conceptual model as the most important aspect of Software design. He believes that all effort should be put into making the conceptual model extensive, unambiguous and understandable. He defined the conceptual model as what the user is likely to think, and how the user is likely to respond. David Liddle praised Dan BrickLin's conceptual model of using the desktop metaphor of managing objects. For example, the way users can file objects, mail and print items.
Prototyping
All designs go through two representative processes. These are the specification and the prototype. The specification can be described as the definition or description of the new ideas that the designer is thinking of. The prototype is the act of exemplifying these ideas. Prototypes can show that the designer's ideas are not feasible or the designer's ideas are not imaginative enough. Some company design cultures are specification driven whiles others are prototype driven. Specification driven cultures mostly draw from market research data before they move to the prototyping stage. Prototype cultures rather feed on market feedback before they move to concluding production.

The disadvantage of specification driven cultures is that a company can work on developing specifications for a long period of time, only to have their first prototype nullify most of the work. On the other hand, a company can also waste all its resources coming up with a very innovative prototype, just to realise that the final production of the product is not feasible. Hence David Kelly argues that, organisations that want to be inventive should move from “specification-driven prototypes” to “prototype-driven specifications”.

The book also talks about how prototyping tools are essential to the design process. It draws its example from the 1970's where car manufacturing companies used to use clay to create their prototypes. This made the prototypes look like art work instead of a medium which would enable clients and designers interact with the product to get the necessary feedback. Hence researchers have now come up with Computer Aided Design (CAD) tools. The American car companies attempted using the clay prototype as input for the CAD tools. This was ineffective because it was an inaccurate process. Toyota did the opposite, by rather designing the car with the CAD tools and producing the clay model as the output. This made the design process quick and easy. This shows the role prototyping media play on the influencing the speed and quality of software products are designed and developed.

One of the advantages of prototypes is that it enables the designers and clients ask essential questions. The kind and quality of questions generated by the prototype measures the prototypes success. These questions and answers serve as feedback with which the products can be evaluated with. These enables the designers reflect on their designs and improve upon them. This enables designers satisfy the user's needs.
Conclusion
This book enlightens its readers on how design can be integrated into software development by drawing ideas and concepts from various authors who have experience in software design field. I decided to do a literary review on this book to enable me have a fair idea of how some factors in software design can affect how users' interact with the software. This is what made me choose to write an essay on “How Aesthetics and Usability which are factors of website design, can or cannot influence the users appeal to the website”.
Bibliography

Winograd, T. (1996). Brnging Design to Software. New York: ACM PRESS.

[1] Winograd, T. Bringing Software to Design. Pg. 107

[2] Winograd, T. Bringing Software to Design. Pg. 20

