OPTIMAL PATH PLANNING USING AN IMPROVED A* ALGORITHM FOR
HOMELAND SECURITY APPLICATIONS

Microsystems and Machine Vision Laboratory
Materials and Engineering Research Institute
Faculty of Arts, Computing, Engineering and Sciences
Sheffield Hallam University

ABSTRACT

Path finding is an important sub task in mobile robotics
and Homeland Security applications and has been
subjected to extensive research. This paper analyses a
variety of search algorithms used for path finding and
planning. Using the Breve simulation environment, a
general search algorithm and then the A* algorithm have
been implemented. An improvement to the A* algorithm
is introduced and presented. In this paper it has been
proved through experimental results that the performance
of the A* algorithm improves considerably after adding
an additional heuristic. Dynamic path planning has also
been implemented in this paper by allowing the vehicle to
check for changes in the environment at every simulation
time step and recalculate paths if there is a change in the
environment. In the past ad-hoc sensor networks have
been used in homeland security. In this paper ad-hoc
sensor networks have been modeled using the patch class
in the Breve simulation tool and path finding techniques
have been used in this environment. Time and space
complexity analysis of the various algorithms
implemented in this paper have been presented.

KEY WORDS
Robotics, artificial intelligence, path planning, homeland
security, search algorithms, sensor networks.

1. Introduction

The problem of dynamic collision free path planning is
vital to mobile robots and robots used in homeland
security applications. The area of homeland robotics has
assumed a great importance in the present age and robots
are now being used extensively to rescue survivors from
dangerous environments and when dealing with
hazardous substances. The robots are used for tasks that
rescuers or canines are unable to perform, for example to
either investigate in spaces that are too small for humans
to pass through, or in areas consumed by fire with limited
breathable air in an attempt to reach a survivable void.

The output of a search algorithm is either a failure or a
solution. The efficiency of a search algorithm can be
evaluated in four ways [1]
o Completeness: Is the algorithm guaranteed to
find a solution when it exists?
e Optimality: Does the strategy find the optimal
solution?
o Time Complexity: The time taken to find the
solution
o Space Complexity: The memory needed to
perform the search

1.1 Background

Search algorithms have been used extensively to solve
various problems like the Queens problem, the dining
philosophers problem etc. In this paper, we restrict
ourselves to the use of search algorithms for path finding
problems. Path finding techniques can be grouped into
local methods and global methods [2]. One well known
local planning method is the potential field method. In
this method the robot follows the gradient of a force field.
The field is generated by attractive potentials from a start
position towards a target and by repulsive potentials that
point away from obstacles. The potential field method has
a low computational requirement. In contrast, global
methods need complete information about the world and
hence would require relatively large computational
power.

The probabilistic roadmap which is a skeletonization
method offers more possible routes and thus deals better
with wide open spaces. The graph is created by randomly
generating a large number of configurations, and
discarding those that do not fall into free space. We then
join any nodes by an arc if it is easy to reach one node
from the other. Theoretically this method is incomplete,
because a bad choice of random points may leave us
without any paths from the start to the target [3].

1.2 Simulation

The Breve simulation environment was used to
implement path finding techniques [5]. Breve is a free,
open-source software package which makes it easy to
build 3D simulations of decentralized systems and
artificial life organisms. Time complexity analysis of the
different search algorithms to find optimal paths was
performed using a timer function in the Steve language,
which is part of Breve. Time complexity analysis of the
various search algorithms showed the efficiency of the
different algorithms. Space complexity analysis of the
search algorithms was also performed. Space complexity
analysis showed not only the efficiency of the different
algorithms but also shows why a particular algorithm
fails. Dynamic path finding and dynamic placement of
sensors (light sensitive objects in the simulation) were
also used in the simulation.

1.3 Outline of the paper

This paper is organised as follows. The search algorithms
and heuristics implemented in this paper are discussed
briefly in section 2. Section 3 gives a short description of
the aspects of Homeland security implemented in this

paper. Section 4 discusses the details of the
implementation done using Breve. A few snapshots of the
simulation performed in this paper are also shown in
section 4. Time and space complexities of the algorithms
are shown in the form of tables and graphs containing the
experimental data obtained through the simulations
implemented in Breve in section 5. Section 6 gives the
conclusions and possible future work.

2 Search Algorithms Used in Path Planning

In this study we have compared the general search
algorithm to the A* algorithm and a modified A*
algorithm that makes use of preset heuristics.

2.1 General Search Algorithm

In the case of a general search algorithm, the agent does
not use any heuristic. The only knowledge the agent
possesses is the start point and the end point. An
exhaustive search of all possible routes is performed and
all routes are given the same importance. The only inbuilt
intelligence is to ignore circular paths. Circular paths are
defined as paths that start and end at the same node.

The pseudo code used in this algorithm is as follows
function GENERAL-SEARCH (problem, stratergy)
returns a solution, or failure
initialise the search tree wusing the initial
state of problem
loop do
1. if there are no candidates for expansion
then return failure
2. choose a leaf node for expansion
according to a fixed strategy
3. 1if the node contains a goal state then
return the corresponding solution
3.1. else expand the node and add the
resulting nodes to the search tree
end

2.2 A* Search algorithm
The A* algorithm is a graph search algorithm and is one
of the most widely used search techniques. Unlike the
general search algorithm above, the A* algorithm uses
heuristic rank estimates to make the search more efficient.
The nodes are evaluated by combining g(n), the cost to
reach the goal, and /(n), the cost to get from the node to
the goal:

fn) = g(n) + hn) (D
Since g(n) gives the path cost from the start node to node
n, and A(n) is the estimated cost of the cheapest path from
n to the goal, we have f(n) = estimated cost of the
cheapest solution through 7 .

Hence if we are trying to find the cheapest solution, a
reasonable route to try first is the node with the lowest
value of g(n) + h(n). Provided that the heuristic function
h(n) satisfies certain conditions, A* search is both
complete and optimal[1].

2.3 Heuristics

In the A* algorithm when there are two or more paths
ending in the same node it makes sense to consider the
best possible path and ignore the rest. This is the heuristic
that the A* search algorithm makes use of. So whenever it
finds that there are more than two paths with the same end
node, it computes the f~cost of the various paths. Among
these paths, the path with the lowest cost is selected and
the rest are simply ignored.

The A* search algorithm also sorts the paths placing the
lowest cost paths at the end since in this way the nodes at
the end of the list are expanded first.

In this paper an additional heuristic has been added to the
A* algorithm. This heuristic is described as follows:

The Manhattan distance between the start and target
location is computed. It can be assumed that a valid path
will not exceed this distance. Hence all paths exceeding
this maximum distance can be concluded to be invalid
and hence ignored. Domains which are influenced by the
presence of obstacles leading to paths greater than this
maximum distance have not been considered in this

paper.

The Manhattan distance and not the Euclidean distance is
considered since the simulated non-holonomic robot is
capable of moving only forwards, backwards, left or right
and is incapable of moving diagonally.

3 Homeland Security

3.1 Sensor Networks

The application of path finding techniques for homeland
applications used in this paper was inspired by work done
Li and Rus [4]. Here a versatile information system by
using distributed sensor networks, i.e. hundreds of small
sensors, equipped with limited memory and multiple
sensing capabilities which autonomously organize and
reorganize themselves as ad hoc networks in response to
task requirements and to triggers from the environment.
Distributed adaptive sensor networks are reactive
computing systems, well suited for tasks in extreme
environments, especially when the environmental model
and the task specifications are uncertain and the system
has to adapt to them. A collection of active sensor
networks can follow the movement of a source to be
tracked, for example, a moving vehicle. It can guide the
movement of an object on the ground, for example, a
surveillance robot. Or it can focus attention over a
specific area, for example, a fire in order to localize its
source and track its spread. A sensor network consists of a
collection of sensors distributed over some area that form
an ad hoc network. Each sensor is equipped with some
limited memory and processing capabilities, multiple
sensing modalities, and communication capabilities.
These sensors are capable of detecting special events
called “danger” (e.g. temperature, biochemical agents,
etc.) that are above a particular threshold. The sensors

that have triggered the special events are considered to be
obstacles.

3.2 Sensor Network Implemented in Breve

The sensor network mentioned in the previous section
was modeled in Breve using patches. The patch class in
the Steve language was utilised for this purpose. In this
paper, the patches were equally distributed over the entire
region. But efficiency could have been improved by
placing the patches in a certain fixed pattern to minimize
the number of patches and thus maximizing the safety of a
vehicle navigating through the area infested with
“danger” (obstacles). In [6] the sensor deployment
problem in the context of uncertainty in sensor locations
for airdropping situations was considered. Sensor
deployment in such scenarios is inherently non-
deterministic and there is a certain degree of randomness
associated with the location of a sensor in the sensor field.
In a sensor network the sensors would sense the special
events electronically. This is simulated in Breve by
placing light obstacles over the patches. The patches are
capable of sensing obstacles placed on them. By getting
the location of the light object and by finding the patch
present at that location we are able to determine the
patches which have obstacles (or “danger”) and patches
which are safe.

4 Implementation

4.1 Cell Decomposition

According to the principle of Cell Decomposition the
entire world is decomposed into equal sized patches. The
Patch and PatchGrid classes in Steve were used for this
purpose. These patches provide a sense of location. That
is, given a location it is possible to obtain the patch object
residing in that location.

The patches were created using

patches = (new PatchGrid init-at location (0,0.75,0) with-
patch-size (5, 0.1, 5) with-x-count X SIZE with-y-count
Y SIZE with-z-count 6 with-patch-class "LifePatch").

By changing the x and z values it was possible to create
patches of different dimension e.g., 4x4, 6x6 efc. A 32x32
patch would fill the entire work space created in this
simulation.

4.2 Light Objects Modelled as Obstacles

The light objects which are part of the sample Braitenberg
class in Breve were used as obstacles. Light objects are
mobile objects and can be moved around during the
simulation, which provides us with dynamic obstacles i.e.
obstacles that would change their position with time. In
this work it was possible to infer a safe path avoiding the
obstacles dynamically by checking for changes in the
position of the obstacles at every iteration time step. If it
were not for computational limitations, this type of
replanning from scratch would be the ideal, since it
guarantees optimal plan generation and execution given
all known information at the time it is acquired. The use

of the D* algorithm (Dynamic A*) could lessen the
computational work by producing an initial plan based on
known and assumed information, and then incrementally
update the plan as new information is discovered. The
implementation of the D* algorithm is left as future work.

4.3 Visual Representation of the implementation
Figure 1 and Figure 2 show two snapshots of the
simulation performed in this paper. The vehicle position
is on the start patch. The patches with protrusions contain
obstacles. The path found is shown by light colored
patches.

Figure 1 below shows the optimal path found in a world
containing obstacles placed in a triangular pattern.

In Figure 2 the optimal path is found in a world
ontaining obstacles placed in a rectangular manner.

Figure 1: Path found in a world containing obstacles
placed in a triangular fashion

Figure 2: Path found in a world containing obstacles
placed in a rectangular fashion

5 Time and Space Complexities

Time and space complexities of the various algorithms
implemented in this paper are discussed in this section.
The following definitions are important to understand the
space complexity analysis.

Maximum paths: The maximum number of possible paths
that the algorithm considers during any iteration as it
progresses to find the final safe path.

Maximum nodes: The number of nodes in the path which
contains the maximum number of nodes before a valid
safe path is found

5.1 Time and Space Complexity of the General Search
Algorithm

Table 1 shows the time taken to compute the optimal

paths for different Manhattan distance values using the

general search algorithm.

Manhattan Distance Time taken to compute

path in seconds

40 0
45 1
50 11
55 116

Table 1: Time Complexity using the general search
algorithm.

The general search algorithm fails when the distance
between start patch and target patch exceeds a Manhattan
distance of 55.

Table 2 shows the maximum paths and the corresponding
maximum nodes for different Manhattan nodes using the
general search algorithm.

Manhattan Maximum paths Maximum
Distance nodes

30 110 7

40 447 9

45 2282 10

50 5614 11

55 13722 12

Table 2: Space Complexity using the general search
algorithm.

The space complexity table shown above proves that the
general search algorithm failed due to the large number of
maximum paths, and hence memory requirements, that
could be computed in a single iteration.

5.2 Time and Space Complexity of the A* Algorithm
Table 3 shows the time taken to compute the optimal
paths for different Manhattan distances using the A*
algorithm.

Manhattan Time taken to | Manhattan Time taken to

Distance compute Distance compute
path(seconds) path(seconds)

80 1 170 27

110 2 175 31

120 3 180 39

125 4 185 45

130 5 190 41

135 7 195 43

140 8 200 74

145 10 205 86

150 13 210 99

155 16 215 148

160 20 220 168

165 23 225 214

Table 3: Time Complexity using the A* algorithm.

A comparison of table 1 and table 3 shows that the A*
algorithm is more efficient than the general search
algorithm.

Table 4 shows the maximum paths and the corresponding
maximum nodes for different Manhattan nodes using the
A* algorithm.

Manhattan Maximum Maximum
Distance paths nodes
30 13 7

35 18 8

40 21 9

45 27 10

50 31 11

55 37 12

60 43 13

65 51 14

85 83 18
125 171 26
150 223 31
200 321 41
220 358 45

Table 4: Space Complexity using the A* algorithm.

Comparing table 2 with table 4, it can be seen that the A*
algorithm expands much lesser number of paths for any
Manhattan distance.

5.3 The General Search Algorithm with additional
heuristics

As previously mentioned, the additional heuristic involves
deleting paths that exceed the maximum Manhattan
distance. These paths are defined by the Manhattan
distance between the start node and the end node. It is
assumed that any path which exceeds this maximum
Manhattan distance is not an efficient path.

Table 5 shows the time taken to compute optimal paths
for different Manhattan distances after adding the
additional heuristic to the general search algorithm.

Manhattan Time taken to

Distance compute
path(seconds)

40 1

45 1

50 3

55 57

60 Infinite

Table 5: Time Complexity using general search
algorithm after adding the additional heuristic.

Comparing the values in table 5 and table 1, we see that
adding this heuristic has certainly improved the
performance of the general search algorithm by
decreasing the time taken to compute paths. Hence if we
add this heuristic to the A* algorithm, it should improve
the performance of the A* algorithm.

Table 6 shows the Maximum paths and Maximum nodes
to compute optimal paths for different Manhattan distance
values after adding the additional heuristic to the general
search algorithm.

Manhattan Maximum Maximum
Distance paths nodes

30 80 7

35 201 8

40 452 9

45 1020 10

50 2198 11

55 4776 12

60 10106 13

Table 6: Space Complexity using general search
algorithm after adding the additional heuristic.

Comparing the values obtained in table 1 and table 6, it
can be seen that the addition of this heuristic has
decreased the space complexity of the general search
algorithm. The next section shows how the addition of
this heuristic improves the A* algorithm.

5.4 The A* algorithm with additional heuristics

Table 7 shows the time taken to compute optimal paths
for different Manhattan distances after adding the
additional heuristic to the A* algorithm.

Manhattan Time taken to

Distance compute
path(seconds)

160 11

180 25

210 70

215 91

220 123

225 140

230 165

235 220

240 238

Table 7: Time Complexity using the A* algorithm
after adding the additional heuristic.

Comparing table 3 and table 7 it can be concluded that
adding this additional heuristic has improved the
performance of the A* algorithm in terms of time taken.

Table 8 shows the Maximum paths and Maximum nodes
to compute optimal paths for different Manhattan
distances after adding the additional heuristic to the
general search algorithm.

Manhattan Maximum Maximum
Distance paths nodes

35 9 8

40 11 9

45 12 10

50 13 11

55 15 12
60 19 13
65 21 14
70 24 15
75 28 16
80 30 17
85 33 18
125 58 26
150 115 31
200 273 41
220 347 45
225 351 46
230 374 47

Table 8: Space Complexity using the A* algorithm
after adding the additional heuristic.

Comparing table 4 and table 8 it can be seen that the
additional heuristic has decreased the number paths
expanded by the A* algorithm even though there is no
improvement in the maximum number of nodes
expanded.

The time and space complexity of the A* and modified

A* algorithms discussed above are also shown in the
graphs of figure 3 and 4 respectively.

250

Ior\gmal A" a\gomhmI —¥—
A* with additional heuristics ---%---

200 f /

150

100
/ 2

e—-*"/ """"

140 160 180 200 220 240
Manhattan distance

seconds

0

Figure 3: Time complexity analysis of A* versus the
modified A* algorithm

400 50

T T
orginal A* - maximum paths —e—

original A* - maximum nodes ---X--- "

modified A* - maximum paths ---%--- ﬁq"

350 modified A* - maximum nodes gk 4 45

1 40

300 .
// 1%
250
7 '
200 / ¥
4 25
///
150
}/ 17
100
/ "
50 P .

s

0 5
0 50 100 150 200 250

Manhattan distance

maximum paths

Figure 4: Space complexity analysis of the A* versus
the modified A* algorithm

6 Conclusion and future work

It was proved with the help of experimental data that the
additional heuristic added to the A* algorithm decreased
the time taken to find optimal paths. Space complexity
analysis also showed us that the reason for the
improvement after adding the additional heuristic was due
to the decrease in the number of paths expanded.

A drawback in this algorithm when used in critical
homeland applications would be that it computes optimal
paths instead of safest paths which may be critical in
some homeland security applications. Hence this
algorithm is more suitably used in non critical homeland
applications and the algorithm needs to be modified for
use in critical homeland applications where it is vital to
compute safe paths which keep the robot as far away from
the obstacles as possible.

This research may be extended in several directions:

e A plain terrain was used in the simulations performed
in this paper. Using Breve it is possible to model
different types of terrains like hills, valleys and lakes
(obstacles). The robots used in the WTC were unable
to withstand the rigors of rubble. The effect of using
the path finding and navigation techniques on
different terrains can be analysed.

e This project deals only with path finding. The
algorithms assume that the sensor locations are
known. Breve has very efficient collision handling
methods. Using this it should be possible to model
and implement map building techniques. The robot
can be made to explore the environment and mark the
safe spots and the danger spots. There is still much
research in the area of map building for mobile
robots. Simultaneous Localization and Mapping
(SLAM) [7] is one of the most used techniques in
map building. So another interesting future work

maximum nodes

would be to first implement map building techniques
to build a map of the environment and then use path
finding techniques using this information.

7 Acknowledgements

I would like to express my gratitude to
e Dr. Stuart Meikle for contributing his ideas on
pathplanning.
e Mr. Jonathan Klien for rescuing me many a
times with regards to issues I encountered when
programming with Breve.

8 Reference:

[1] Stuart Russell, Peter Norvig, 4 modern approach
(Englewood Cliffs, NJ: Pearson Education, 2003).

[2] Sven Behnke, Local Multiresolution Path Planning. In
Proceedings of 7th RoboCup International Symposium,
2004, 332-343.

[3] L. Kavraki, P. Svestka, J.C. Latombe, and M.
Overmars, Probabilistic road maps for path planning in
high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 1996, 566—
580.

[4] Qun Li, Daniella Rus. Navigation Protocols in Sensor
Networks, ACM Transactions on Sensor Networks
(TOSN) 2005, 3 — 35.

[5] Klein, J. Breve, 4 3D simulation environment for the
simulation of decentralized systems and artificial life,
Proceedings of Artificial Life VIII, the 8th International
Conference on the Simulation and Synthesis of Living
Systems, 2002.

[6] Y. Zou and K. Chakrabarty, Uncertainty-Aware
Sensor Deployment Algorithms for Surveillance
Applications, 2003, 261-272.

[7] Stefan B.Williams, Hugh Durrant-Whyte, Gamini
Dissanayake, Constrained Initialization — of the
Simultaneous Localization and Mapping Algorithm, In
the International Journal of Robotics Research.2003, 7—
8.

