Network Protocol Monitoring
In this fast growing world of networks, monitoring and maintaining are the key areas of network administration. Again the Productivity of business is greatly dependent on efficiency of network which needs consistent maintenance. In a sluggish economy, as of today no company is willing to invest in IT infrastructure to improve the efficiency of network. From the above said perspective the project entitled PROTOCOL ADDRESS TRANSLATOR tries to make an analysis of existing traffic using a traffic monitoring tool in wan technologies and wireless networks, based on the yielded results the administrator can control the existing network's traffic. One can also identify unwanted traffic can block it; can prioritize traffic within network by policy based bandwidth allocation. These measures will help in making effective use of existing resources to optimize the performance of existing Ethernet networks.

In order to cut down the cost of software development the above said software is developed using a gifted open source platform namely LINUX. This product will make use of tools available in Linux, gcc the GNU c compiler and the graphical environment using GTK (Gimp tool kit) which again comes free of cost.

Thus this tool can be used by anybody and everybody who is willing to maximize the performance of network with existing resources.

1. INTRODUCTION

1.1 SYSTEM STUDY:

EXISTING SYSTEM:

At present Network Monitoring application component of Systems Controlling Server is a diagnostic tool that allows administrators to look at the details of network packets that traverses along both wired and wireless networks, perform remote captures on a packet anywhere on the network, and gather network statistics about a group of personal computers. It enables network administrators to capture and analyze network traffic and detect problems or potential network bottlenecks. Traffic analyzers that are used doesn't provide any mechanisms to control an manage traffic in the network.

PROPOSED SYSTEM:

The Proposed system is an intelligent system which is capable of analyzing network traffic using a traffic monitoring tool and based on the yielded results the administrator can control the existing network's traffic. One can also identify unwanted traffic can block it; can prioritize traffic within network by policy based bandwidth allocation. The proposed system has designed to care five major areas

They are

Traffic Analysis System

Switching manager

Bandwidth Monitoring

The above three areas are designed in such a way that the traffic analysis and traffic controlling work simultaneously to achieve traffic grooming in the network

Traffic Analysis System is a diagnostic tool that allows administrators to look at the details of network packets, perform remote captures on a packet anywhere on the network, and gather network statistics about a group of personal computers. It enables network administrators to capture and analyze network traffic and detect problems or potential network bottlenecks when traffic levels reaches 60 % to 70% an alarm signal is generated to indicate the administrator

Switching manager deals with controlling of Network traffic based on the yielded results of the traffic analysis system, administrator can control the existing network's traffic. One can also identify unwanted traffic can block it; can prioritize traffic within network by policy based bandwidth allocation deals with monitoring and managing of network resources its main job is to monitor the flow of data or the transmission rate between two end points of network based on these feasibility results Switching manager is alerted and starts controlling the traffic

Bandwidth Monitoring deals with monitoring and analyzing the total network bandwidth as well as internet bandwidth, total network bandwidth monitoring is used to monitor over all traffic and manipulates every protocols currently active protocols and monitors their status and calculates the amount of packet transmission done by each protocol active on the network deals with performance and reliability analysis of an inert face or two endpoints. Queuing happens only when the interface is busy. As long as the interface is idle, packets will be transmitted without special treatment. Regular queues invariably employ the first in, first out (FIFO) principle: the packet that has been waiting the longest is transmitted first. When the queue is full, and additional packets come in, tail drops happen. More sophisticated queuing mechanisms usually employ several queues. Packets are classified by user-configurable means and then placed in the appropriate queue. Then, when the interface is ready to transmit, a queue from which the next packet will be transmitted is selected as per the queuing algorithm.

1.2 SWITCHING MANAGER

Switching managers inspect traffic flows, determine the traffic type or application, and define a course of action based on priority, which is determined by business needs. Application Switching managers with layer-7 classification and shaping technologies like TCP rate control have the ability to proactively control transmission rates of desired application before congestion occurs, without packet discards. This, combined with the ability to protect critical traffic by ensuring bandwidth for it, makes the systems very effective at smoothing traffic bursts. This is a key benefit when implementing delay-sensitive application like VoIP, because traffic bursts and lack of dedicated bandwidth can make it difficult for downstream devices to keep up with transmission rates, resulting in jitter and packet loss. By guaranteeing bandwidth for business applications and enabling the network manager to cap the bandwidth available for non-essential applications, advanced traffic shaping solves many problems associated with rogue traffic. For instance, Oracle or SAP can be prioritized to give them 50 percent of the available bandwidth whenever a transaction is taking place, but allow other applications to use that bandwidth when they are inactive. HTTP traffic can be assigned minimum and maximum bandwidth but be allowed to exceed the maximum if the bandwidth is available. Allocating bandwidth and utilizing TCP and UDP rate control to smooth traffic bursts enables network managers to optimize network resources for the most critical applications.

1.3Carrier Sense Multiple Access with Collision Detection

CSMA/CD (Carrier Sense Multiple Access with Collision Detection) is to provide each host connected to the Ethernet network with equal access to the shared medium. That is each host should, in theory, receive the same bandwidth. As we will see this is not always the case. CSMA/CD is a MAC (Medium Access Control) method. Operation of CSMA/CD is shown in the diagram at the bottom of the page. When a device wants to send data the device "Listens to the Network" this is the "Carrier Sense" part as it is listening to see if the network is busy. If the device detects that the network is busy then it will wait for a time and then restart the process. If the device, and for that matter any device, detects that the network is clear then it is free to "Transmit Data and Listen for Collision". How are collisions still possible if the device has already checked that the network is idle The answer lies in the fact that there is a brief period of time when another device on the network has transmitted but this has not been detected at our device as the first bit from the other device's signal has not had time to reach us yet. This situation creates a new state where our device thinks the network is idle but it is not really. This state is called "contention" as each device believes it has transmitted first. This leads us to the conclusion that the network can be in one of three possible states: idle, transmitting or contention. When two devices try to transmit onto the medium at the same time interference is caused and the signal is corrupted. IEEE 802.3 calls this situation a "SQE"(Signal Quality Error) but it more commonly known as a "packet collision". On a coaxial based network medium a SQE can be detected by devices because the voltage on the cable will be higher or lower than the usual +/-0.85V. On a twisted-pair or optical fiber network the collision is detected in signal activity in the devices. When a collision is detected the device will "transmit a jam signal" this will inform all the devices on the network that there has been a collision and hence stop them initiating the transmission of new data. This "jam signal" is a sequence of 32 bits that can have any value as long as it does not equal the CRC value in the damaged frame's FCS field. This jam signal is normally 32 1's as this only leaves a 1 in 2^32 chance that the CRC is correct by chance. Because the CRC value is incorrect all devices listening on the network will detect that a collision has occurred and hence will not create further collisions by transmitting immediately.

After transmitting the jam signal the two nodes involved in the collision use an algorithm called the "truncated BEB (truncated binary exponential back off)" to determine when they will next retransmit. The algorithm works as follows:

Each device will wait a multiple of 51.2us (minimum time required for signal to traverse network) before retransmitting. 51.2us is known as a "slot". The device will wait a certain number of these time slots before attempting to retransmit. The number of time slots is chosen from the set {0,....., 2^k-1} at random where k= number of collisions. This means k is initialized to 1and hence on the first attempt k will be chosen at random from the set {0,1} then on the second attempt the set will be {0,1,2,3} and so on. K will stay at the value 10 in the 11, 12, 13, 14, 15 and 16th attempt but on the 17th attempt the MAC unit stops trying to transmit and reports an error to the layer above.

When collisions occur a "runt" is produced. This is simply the small; malformed packed the sender transmitted before it realized there was a collision. This runt will be easily discarded within any Ethernet segment because it is less than 64 bytes and the CRC in the frame header will be wrong. However, it is important that switches joining Ethernet segments do not forward these runts to other segments and therefore create more collisions.

Collisions if more than one station happens to transmit on the Ethernet channel at the same moment, then the signals are said to collide. The stations are notified of this event, and instantly reschedule their transmission using a specially designed back off algorithm. As part of this algorithm the stations involved each choose a random time interval to schedule the retransmission of the frame, which keeps the stations from making transmission attempts in lock step. It's unfortunate that the original Ethernet design used the word "collision" for this aspect of the Ethernet medium access control mechanism. If it had been called something else, such as "stochastic arbitration event (SAE)," then no one would worry about the occurrence of SAE on an Ethernet. However, "collision" sounds like something bad has happened, leading many people to think that collisions are an indication of network failure. The truth of the matter is that collisions are absolutely normal and expected events on an Ethernet, and simply indicate that the CSMA/CD protocol is functioning as designed. As more computers are added to a given Ethernet, and as the traffic level increases, more collisions will occur as part of the normal operation of an Ethernet. The design of the system ensures that the majority of collisions on an Ethernet that is not overloaded will be resolved in microseconds, or millionths of a second. A normal collision does not result in lost data. In the event of a collision the Ethernet interface backs off (waits) for some number of microseconds, and then automatically retransmits the data. Network with heavy traffic loads it may happen that there are multiple collisions for a given frame transmission attempt. This is also normal behavior. If repeated collisions occur for a given transmission attempt, then the stations involved begin expanding the set of potential back off times from which they chose their random retransmission time. Repeated collisions for a given packet transmission attempt indicate a busy network. The expanding back off process, formally known as "truncated binary exponential back off," is a clever feature of the Ethernet MAC that provides an automatic method for stations to adjust to traffic conditions on the network. Only after 16 consecutive collisions for a given transmission attempt will the interface finally discard the Ethernet packet. This can happen only if the Ethernet channel is overloaded for a fairly long period of time, or is broken in some way.

Carrier Sensing to further reduce the probability of collisions, an interface can simply not transmit when another one is transmitting. Since signal propagation takes time (signals do not travel faster than the speed of light), some time elapses between the beginning of the transmission and the time a collision might occur from an interface which had not yet begun receiving the transmitted signal. Both interfaces ``believe'' they were the first to begin transmitting and they are both right in their own frame of reference, the paradox is well documented in studies of Einstein's general relativity. The ``contention time,'' as this period of uncertainty is known is twice the propagation time between the most distant pair of interfaces in the Ethernet. Propagation time is about 5 nanoseconds per meter on a coaxial cable. For a 500 meter cable, one gets a contention time of 5 microseconds. Since a bit time is 100 nanoseconds in a 10 Mbps Ethernet, 50 bits are transmitted during the contention period. A system employing CSMA/CD will thus be in one of three states: transmission, contention, or idle. A small amount of idle time is required before and after each transmission and contention state for the carrier sensing to do its job. However, in a busy network it may happen that several interfaces attempt to transmit when they sense an idle network. The combination of carrier sensing to prevent transmissions that otherwise would result in collisions and collision detection to terminate incomplete transmissions that have collided increase the efficiency of Ethernet over ALOHA. Under the same kind of statistical analysis as was applied to ALOHA, one gets a result of 0.37 frames per frame time being transmitted with the peak occurring at about 0.8 attempted transmissions per frame time. In a real network, things are not as tidy as in the statistical studies. Frames vary in size and traffic tends to come in bursts rather than being fairly uniformly spread out. Contention comes only at the beginning of the frame, so the simplest measure of the network load as it relates to collisions is the packet rate. Ethernet has a lower limit on frame size which limits the maximum theoretical packet rate to about 14 thousand packets per second, but with packets approaching the maximum frame size one would expect a few hundred packets per second on a busy network and about a thousand packets per second on a pathologically busy one. With a sufficiently small number of hosts contending for the total network bandwidth one can hope to see about 8 Mbps transmitted on a 10 Mbps network. Hence, if one performs a file transfer between two hosts one might actually see a 20 MB file (20 MB = 160 Mb) transferred in 20 seconds (1 Mbps). Most disk drives only spin at a few Mbps, so there is not a significant penalty for network access on such a lightly loaded network. However, as more hosts place demands on the network, the share each gets of the total available bandwidth decreases. In addition, as the demand for network bandwidth increases, efficiency begins to drop. In the extreme case, an Ethernet can achieve a condition called ``collapse'' in which it does not leave the contention state for any significant amount of time. In theory, it can be triggered by a bad combination of timing with just a handful of interfaces all initiating a transmission as soon as the network appears idle, but the probability is astronomically small that such an event would occur. Typically, collapse is triggered by an interface that has a failure in its circuitry. Sometimes a single interface will ``jabber'' by sending a continuous stream of bad frames (often without stopping to do carrier sensing or collision detection).

Collision Detection consider the ALOHA system mentioned earlier. Suppose one broadcasts frames that are all the same size (to simplify the analysis). The amount of time to transmit a frame, the ``fame time'' is the ratio of the frame length and the bit rate. A collision will result with a given frame if any other frame is broadcast within one frame time of the start of the given frame. This window of vulnerability is two frame times in duration, since the collision may be either with a frame that started before the given frame or after it. Suppose that the collection of stations generates an average of X frames per frame time (with a Poisson distribution), with 0<X<1. Then, statistically, one would expect (after much careful analysis) about 0.18 frames successfully transmitted per frame time at most. This maximum occurs with X=0.5 in order to make this more efficient, Ethernet immediately stops the transmission of a frame as soon as a collision has been detected. Thus, frames involved in a collision are shorter than those that are not. To recover from the collision the network interface waits a short while and then retransmits. If a collision occurs on the second attempt, it waits twice as long as it did the first time before retransmitting. This process is called ``back off.'' Each time the interface increases the time between making a transmission attempt it will increase the time by a small constant factor, leading to ``exponential back off.'' Ethernet specifies a 2 as common small constant factor which is then called ``binary exponential back off.'' The retransmission is attempted about 6 times, and then the data to be transmitted is simply discarded. Hence, a busy Ethernet will drop packets.

Best Effort Data Delivery this brings up an interesting point, which is that the Ethernet system, in common with other LAN technologies, operates as a best effort" data delivery system. To keep the complexity and cost of a LAN to a reasonable level, no guarantee of reliable data delivery is made. While the bit error rate of a LAN channel is carefully engineered to produce a system that normally delivers data extremely well, errors can still occur. A burst of electrical noise may occur somewhere in a cabling system, for example, corrupting the data in a frame and causing it to be dropped. Or a LAN channel may become overloaded for some period of time, which in the case of Ethernet can cause 16 collisions to occur on a transmission attempt, leading to a dropped frame. No matter what technology is used, no LAN system is perfect, which is why higher protocol layers of network software are designed to recover from errors. It is up to the high-level protocol that is sending data over the network to make sure that the data is correctly received at the destination computer. High-level network protocols can do this by establishing a reliable data transport service using sequence numbers and acknowledgment mechanisms in the packets that they send over the LAN.

Ethernet Frame and Ethernet Addresses the heart of the Ethernet system is the Ethernet frame, which is used to deliver data between computers. The frame consists of a set of bits organized into several fields. These fields include address fields, a variable size data field that carries from 46 to 1,500 bytes of data, and an error checking field that checks the integrity of the bits in the frame to make sure that the frame has arrived intact. The first two fields in the frame carry 48-bit addresses, called the destination and source addresses. The IEEE controls the assignment of these addresses by administering a portion of the address field. The IEEE does this by providing 24-bit identifiers called "Organizationally Unique Identifiers" (OUI), since a unique 24-bit identifier is assigned to each organization that wishes to build Ethernet interfaces. The organization, in turn, creates 48-bit addresses using the assigned OUI as the first 24 bits of the address. This 48-bit address is also known as the physical address, hardware address, or MAC address. A unique 48-bit address is commonly pre-assigned to each Ethernet interface when it is manufactured, which vastly simplifies the setup and operation of the network. For one thing, pre-assigned addresses keep you from getting involved in administering the addresses for different groups using the network. And if you've ever tried to get different work groups at a large site to cooperate and voluntarily obey the same set of rules, you can appreciate what an advantage this can be. As each Ethernet frame is sent onto the shared signal channel, all Ethernet interfaces look at the first 48-bit field of the frame, which contains the destination address. The interfaces compare the destination address of the frame with their own address. The Ethernet interface with the same address as the destination address in the frame will read in the entire frame and deliver it to the networking software running on that computer.

1.4 packet starvation effect

Packet starvation effect that occurs in Ethernet controllers due to the unfairness of the CSMA/CD algorithm. The PSE causes some packets to experience latencies up to 100 times the average or to completely starve out due to 16 collisions. The PSE causes some packets to experience high delays at realistic offered loads as low as 40% and causes complete starvation of some packets at offered loads as low as 60%. The PSE makes CSMA/CD LANs unsuitable for real-time traffic except at offered loads much less than 100%. It is the limiting factor in the usable bandwidth of the bus. As an alternative to CSMA/CD, we present the Fair Dual Distributed Queue (FDDQ) algorithm. Under high load, FDDQ uses a single reservation mini-slot per packet and a tree-based collision resolution algorithm (CRA) to maintain two distributed queues of waiting senders. This provides two priority FCFS access to the network. FDDQ provides utilizations and average latencies very similar to those of CSMA/CD but is fair even at extremely high offered loads. The protocol is stable for a constant number of senders, is simple enough to be practical, should be implemental in firmware, and completely eliminates the PSE.

1. 5 Explanation of the PSE

The reason for the packet starvation effect is that when two packets compete for access under CSMA/CD, the probability of one packet getting access over the other is approximately proportional to the ratio of their maximum back off values. When two packets become ready (due to a new arrival or to the end of a back off) at approximately the same time, the two controllers will both wait until they see that the network is free and then attempt to send, colliding with each other. When this occurs, they both back off a random amount based on the number of collisions (N) that the packet has been a part of. If N is less than or equal to 10, the back off is between 0 and 2N- 1. It is between 0 and 1023 otherwise.

The probability that an older packet selects a smaller back off value than a newer packet with fewer collisions is less than the ratio of the newer packet's maximum back off (2N-1 or 1023) divided by the older packet's maximum back off. Because this value increases exponentially, unless a packet comes ready when no other host is ready to send, it will usually either get access to the bus very quickly or it will Experience 16 collisions and starve out. Under high load, there is usually another packet waiting to send, and so long delays and packet starvation occurs to a significant percentage of packets. We offer an example of this problem here. Consider two packets, an old packet which has collided three times and a new packet which has not been in a collision. If these two collide, the old packet (N=4 now) will select a back off between 0 and 15 and the new packet (N=1) will select a back off between 0 and 1. The only case where the old packet will get access before the new packet is if the new packet selects 1 and the old packet selects 0, this has a probability of 1/32. If they both select the same value, they will collide and back off again (probability 2/32). Otherwise the new packet gets to request the bus again before the old packet (probability 29/32). Because of this effect, the old packet will usually keep on backing off until it is the only packet trying to access the network or until it starves out after 16 collisions.

Quantification of the PSE

The packet starvation effect for three classes of traffic: continuously queued sources, data traffic, and combinations of data and video traffic. The continuously queued sources are very similar to the sources measured in 2, except that the network length of 2759m for our simulations is longer than the 910m used in that study. This study showed that while the average latency scaled pretty much linearly as a function of offered load for their tested cases, the standard deviation of latency was at least 2 to 5 times the mean for the very high offered loads that they tested. Although we omit the graphs here, our simulations both agreed with this result and generalized it to the tested data and video sources. We found that this average latency/standard deviation of latency ratio started small and increased quickly with offered load. It became higher than 2 at between 50% and 65% offered load, and increased to a maximum of between 4 and 5. The reason for this extremely high variance is in large part due to the PSE. Most packets get through in a reasonable amount of time, but some take extremely long times to get through. This graph shows the simulated packet latency experienced by the first 1000 consecutive packets from a video host. This graph is taken from a scenario with 3 video streams (offered load 65.4%) and 40 data stations (offered load 6.5%) which together offer a total load of only 71.9%. The average latency for the packets in this graph is only 3.4 ms, yet there are numerous packets which have delays over 100 ms and the standard deviation of latency is 12.6 ms. Figures 4.2 through 4.5 show the percentage of packets that experience the PSE at three different levels. The mildest level is packets that experience what we call partial starvation for at least 50 ms. These are blocked from access to the bus for at least 50 ms before they finally manage to get through, usually because a back off ends when no other host is offering a packet. The second level consists of packets that experience partial starvation for at least 100 ms, and the final level consists of packets that completely starve out due to 16 collisions. On average, it took a starved packet approximately 225 ms before it finished its 16th collision and starved out, and this varied all the way from 75 ms to nearly 400 ms.

1.5.1 Automatic Discovery and Classification of Network Traffic

As first step towards avoiding packet starvation effect we need to classify the incredible variety of traffic, and distinguish vulnerable traffic form the rest. A good management suite should classify traffic automatically, by application. Port matching is insufficient since different applications can utilize the same port and some rogue applications port-hop and can come through port 80 looking like HTTP traffic. So this what most of the traffic analysis does to over come this we look forward to a more sophisticated approach where in we can determine the overall traffic irrespective of port numbers by analyzing each and every protocol currently active in the network so this will help us not only in determining network traffic but also to have better control over network protocols

1.5.2 Protocol Analysis

Protocol analysis is process of analyzing and allows administrators to look at the details of network packets, perform remote captures on a packet anywhere on the network, and gather network statistics about a group of personal computers. It enables network administrators to capture and analyze network traffic and detect problems or potential network bottlenecks. Protocol analysis provides a graphical display of network statistics that we can use to perform routine troubleshooting tasks, such as locating client-to-server connection problems, or finding a computer making a disproportionate number of work requests. This packet was originally 1514 bytes long, but only the first 384 bytes are shown here:

000 00 00 BA 5E BA 11 00 A0 C9 B0 5E BD 08 00 45 00 ...^......^...E.010 05 DC 1D E4 40 00 7F 06 C2 6D 0A 00 00 02 0A 00@....m......020 01 C9 00 50 07 75 05 D0 00 C0 04 AE 7D F5 50 10 ...P.u......}.030 70 79 8F 27 00 00 48 54 54 50 2F 31 2E 31 20 32

py.'...HTTP/1.1.2040 30 30 20 4F 4B 0D 0A 56 69 61 3A 20 31 2E 30 20 00.OK...Via: .1.0.050 53 54 52 49 44 45 52 0D 0A 50 72 6F 78 79 2D 43 TRIDER...Proxy-C 60 6F 6E 6E 65 63 74 69 6F 6E 3A 20 4B 65 65 70 2D nection: .Keep- 070 41 6C 69 76 65 0D 0A 43 6F 6E 74 65 6E 74 2D 4C Alive. Content-L 080 65 6E 67 74 68 3A 20 32 39 36 37 34 0D 0A 43 6F ength: .29674...Co090 6E 74 65 6E 74 2D 54 79 70 65 3A 20 74 65 78 74 ntent-Type:.text0A0 2F 68 74 6D 6C 0D 0A 53 65 72 76 65 72 3A 20 4D /

This is the standard "hex dump" representation of a network packet, before being decoded. A hex dump has three columns: the offset of each line, the hexadecimal data, and the ASCII equivalent.

This packet contains a 14-byte Ethernet header, a 20-byte IP header, a 20-byte TCP header, an HTTP header ending in two line-feeds (0D 0A 0D 0A) and then the data. The reason both hex and ASCII are shown is that sometimes ones is easier to read than the other. For example, at the top of the packet, the ASCII looks like garbage, but the hex is readable, from which we can tell, for example, that my MAC address is 00-00-BA-5E-BA-11. Information from Packet Header explains the structure of a captured Packet. In this case the packet is a TCP/IP packet encapsulated in to an Ether packet.

Ether

Header

IP Header

&

Options

TCP Header

&

Options

Actual Data

Figure 1: IP/TCP packet encapsulated in to an Ether packet

A "protocol analyzer" will then take this hexdump and interpret the individual fields:

ETHER: Destination address : 0000BA5EBA11

ETHER: Source address : 00A0C9B05EBD

ETHER: Frame Length : 1514 (0x05EA)

ETHER: Ethernet Type : 0x0800 (IP)

IP: Version = 4 (0x4)

IP: Header Length = 20 (0x14)

IP: Service Type = 0 (0x0)

IP: Precedence = Routine

IP: ...0.... = Normal Delay

IP:0... = Normal Throughput

IP:0.. = Normal Reliability

IP: Total Length = 1500 (0x5DC)

IP: Identification = 7652 (0x1DE4)

IP: Flags Summary = 2 (0x2)

IP:0 = Last fragment in datagram

IP:1. = Cannot fragment datagram

IP: Fragment Offset = 0 (0x0) bytes

IP: Time to Live = 127 (0x7F)

IP: Protocol = TCP - Transmission Control

IP: Checksum = 0xC26D

IP: Source Address = 10.0.0.2

IP: Destination Address = 10.0.1.201

TCP: Source Port = Hypertext Transfer Protocol

TCP: Destination Port = 0x0775

TCP: Sequence Number = 97517760 (0x5D000C0)

TCP: Acknowledgement Number = 78544373 (0x4AE7DF5)

TCP: Data Offset = 20 (0x14)

TCP: Reserved = 0 (0x0000)

TCP: Flags = 0x10 : .A....

TCP: ..0..... = No urgent data

TCP: ...1.... = Acknowledgement field significant

TCP:0... = No Push function

TCP:0.. = No Reset

TCP:0. = No Synchronize

TCP:0 = No Fin

In the above hex dump and decode, we've underlined is the "Time to Live" field of 0x7F. This is how a protocol decode works: it pulls each of the fields out of the packet and attempts to explain what the numbers mean. Some fields are as small as a single bit, other span many bytes.

1.5.3 Descriptions of Packets And Packet headers.

Structure IP packet header.

The IP packet header consists of 20 bytes of data. An option exists within the header which allows further optional bytes to be added, but this is not normally used. The full header is shown below:

Figure 2: The IP Header

The header fields are discussed below:

Version (always set to the value 4, which is the current version of IP)

IP Header Length (number of 32 -bit words forming the header, usually five)

Type of Service, now known as Differentiated Services Code Point (DSCP) (usually set to 0, but may indicate particular Quality of Service needs from the network, the DSCP defines one of a set of class of service)

Size of Datagram (in bytes, this is the combined length of the header and the data)

Identification (16-bit number which together with the source address uniquely identifies this packet - used during reassembly of fragmented datagrams)

Flags (a sequence of three flags (one of the 4 bits is unused) used to control whether routers are allowed to fragment a packet (i.e. the Don't Fragment, DF, flag), and to indicate the parts of a packet to the receiver)

Fragmentation Offset (a byte count from the start of the original sent packet, set by any router which performs IP router fragmentation)

Time To Live (Number of hops /links which the packet may be routed over, decremented by most routers - used to prevent accidental routing loops)

Protocol (Service Access Point (SAP) which indicates the type of transport packet being carried (e.g. 1 = ICMP; 2= IGMP; 6 = TCP; 17= UDP).

Header Checksum (A 2's complement checksum inserted by the sender and updated whenever the packet header is modified by a router - Used to detect processing errors introduced into the packet inside a router or bridge where the

packet is not protected by a link layer cyclic redundancy check. Packets with an invalid checksum are discarded by all nodes in an IP network)

Source Address (the IP address of the original sender of the packet)

Destination Address (the IP address of the final destination of the packet)

Options (not normally used, but when used the IP header length will be > 5 32-bit words to indicate the size of the options field)

The User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is a transport layer protocol defined by the US Department of Defense (DoD) for use with the IP network layer protocol. It provides a best-effort datagram service to an End System.

The service provided by UDP is an unreliable service which provides no guarantees for delivery and no protection from duplication (if this arises due to software errors within an Intermediate System (IS)). The simplicity of UDP reduces the overhead from using the protocol and the services may be adequate in many cases.

A computer may send UDP packets without first establishing a connection to the recipient. The computer completes the appropriate fields in the UDP header (PCI) and

forwards the data together with the header for transmission by the IP network layer.

Figure 3: The UDP protocol header

The UDP header consists of four fields each of 2 bytes in length:

Source Port (UDP packets from a client use this as a service access point (SAP) to indicate which session on the local client originated the packet. UDP packets from a server carry the server SAP in this field)

Destination Port (UDP packets from a client use this as a service access point (SAP) to indicate which service is required from the remote server. UDP packets from a server carry the client SAP in this field)

UDP length (The number of bytes of data)

UDP Checksum (A checksum to verify that the end to end data has not been corrupted by routers or bridges in the network or by the processing in an end system. If this check is not required, the value of 0x0000 is placed in this field, in which case the data is not checked by the receiver.)

The UDP header and data are not processed by Intermediate Systems (IS) in the network, and are delivered to the final destination in the same form as originally transmitted.

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is a connection-oriented reliable protocol. It provides a reliable transport service between pairs of processes executing on End Systems (ES) using the network layer service provided by the IP protocol.TCP providing reliable data transfer to FTP over an IP network using Ethernet

TCP is stream oriented, that is, TCP users exchange streams of data. The data are placed in buffers and transmitted by TCP in transport Protocol Data Units (sometimes known as "segments"). TCP is much more complex than UDP (which provides the Best Effort service). TCP implements a number of protocol timers to ensure reliable and synchronized communication between the two End Systems. The TCP transport service is used by such applications as telnet, World Wide Web (WWW), ftp, electronic mail. The transport header contains a Service Access Point which indicates the protocol which is being used (e.g. 23 = Telnet; 25 = Mail; 69 = TFTP; 80 = WWW (http)).

1.3.4 Quality of Service

A dedicated traffic management system should offer a great deal of flexibility in prioritizing traffic, allocating bandwidth, and controlling packet flow. Even though simple QoS capabilities can be implemented on the router, look for a dedicated traffic management system with QoS capabilities. This enables managers to more effectively control traffic while offloading QoS tasks to a dedicated device, reducing overhead on network devices. Network managers also need the ability to dedicate bandwidth by application or user. A recently revived capability that network managers should consider is traffic compression. Compression compliments traffic shaping by accelerating traffic across bandwidth-constrained WAN links.

1.4 Technology Used

Traffic management is the core technology behind this project. Traffic management system should offer a great deal of flexibility in prioritizing traffic, allocating bandwidth, and controlling packet flow and increase the flexibility of network usage.

This technology is emerging now-a-days in rapid phase in order to achieve traffic grooming in the network .The companies are adopting this technology in a rapid phase in order to increase their network communication speeds and also increase the reliability of the network in their existing network without changing their existing network devices.

Glade : Graphical Interface Designer

LibPcap : Packet Capturing and Analysis Engine

C : Programming Language

Pango : Connectivity between C and Glade

2.DEVELOPMENT ENVIROMENT

2.1 HARDWARE REQUIREMENTS

The following hardware was used during developing this system:

Processor : Intel Pentium -111

Main Memory : 64 Mb

Hard Disk : 10 GB

Floppy drive : 1.44MB, 3

Display type : 15 SVGA color monitor

Serial ports : 2

Parallel ports : 1

Main memory : 128 SD RAM

Mouse : Logitech

Keyboard : Samsung

Ethernet card : Intex PCI (rtl8029)

2.2 SOFTWARE REQUIREMENTS

2.2.1 SOFTWARE REQUIREMENT PLANNING

The requirement planning is a process of discovering refinement modeling and specification. The software scope, initially established by the system engineer and defined during software project planning is refined in detail. Models of the required information, control flow, operational behavior and data contents are created.

A thorough understanding of all the software requirements for the project is essential to the success of software development effort. A program will disappoint the user if it is not well analyzed and specified even if is well designed and well closed.

Requirement planning is a software-engineering task that bridges gap between the system level software allocation and software design. Requirement planning enables a system engineer to specify software function and indicates the performance of the other system elements and establishes design constraints that the software should meet.

A requirement planning allows the software engineer (analyst) to refine the software allocation and build models of them, process date and behavioral domain that will be treated by the software. This also provides the software engineer with a representation of information and function that can be translated to date, architectural and procedural design. Finally, the requirement provides that the customer with the means to access the quality once the software is built.

Both the developer and the customer take active role in requirement planning and specification. The customer attempts to reformulate a nebulous concept of software function and performance into concrete detail. The developer acts as an interrogator, consultant and problem solver.

2.2.2 Software Tools:

Operating System : Red Hat Linux 7.2

Programming Language : C

Main Libraries : Bpf, Libpcap

GUI Interface : Glade Interface Designer

Protocols : All the Available Protocols in the DOD stack

GLADE INERFACE DESIGNER

Glade is an application for creating graphical user interfaces that use the Gtk+ and GNOME libraries. Glade allows us to rapidly develop these interfaces, and can create source code in a variety of languages that will construct the interfaces for us. Glade can also be used in conjunction with libglade to dynamically create user interfaces from the XML description file that Glade creates. Glade is composed of several windows which each server a particular purpose. The main window contains the menu, toolbar and a list of top-level windows. The palette lists the various UI objects which we can use to build an interface. The property editor lets us manipulate the properties of widgets, such as their size, color, signal masks, etc. Typically a Glade project begins with the construction of the user interface. Using the palette, we composite and insert widgets until we we arrive at the desired interface. While doing this we usually use the property editor to manipulate the various packing settings, dimensions, etc., of the widgets.

GTK+ - Graphical Image Manipulation Program Toolkit

GTK+ is a multi-platform toolkit for creating graphical user Interfaces .Offering a complete set of widgets, GTK+ is suitable for Projects ranging from small one-off tools to complete application Suites. GTK+ has been designed from the ground up to support a range of Languages, not only C/C++. Using GTK+ from languages such as Perl and Python (especially in combination with the Glade GUI builder) provides An effective method of rapid application development. GTK+ is a multi-platform open source GUI Toolkit and Free Software LGPL licensing allows us to code our projects with the most freedom possible. We can develop open software, free software, or even commercial non-free software without having to spend a dime for licenses or royalties. GTK+ is a set of libraries to create graphical user interfaces. It works on many Unix-like platforms, and a Windows version is in development. GTK+ is released under the GNU Library General Public License (GNU LGPL), which allows for flexible licensing of client applications. GTK+ has a C-based object-oriented architecture that allows for maximum flexibility.

GTK+ Elements:

Gtk+ comprises of three major elements that render a well -structured look for an interface .some of these elements are optional yet usage assures a better presentation.

LIBPCAP AND BERKELEY PACKET FILTERING:

Libpcap, a system-independent interface for user-level packet capture. Libpcap provides a portable framework for low-level network monitoring. Applications include network statistics collection, security monitoring, network debugging, etc. Since almost every system vendor provides a different interface for packet capture, and since we've developed several tools that require these interfaces, we've created this system-independent API to ease in porting and to alleviate the need for several system-dependent packet capture modules in each application. The libpcap interface supports a filtering mechanism based on the architecture of the BSD packet filter. Although most packet capture interfaces support in-kernel filtering, libpcap utilizes in-kernel filtering only for the BPF interface. On systems that don't have BPF, all packets are read into user-space and the BPF filters are evaluated in the libpcap library, incurring added overhead (especially, for selective filters).

Hierarchical structure of Berkeley packet filtering

Packet capturing was brought with the advent of Ethernet. The first personal computer, Xerox Alto, already had programs to monitor Ethernet. As Ethernet came into wide use, dedicated network monitors became indispensable to developers and operators. Many versions of UNIX provide facilities for user-level packet capture, making possible the use of general purpose workstations for network monitoring. Because network monitors run as user-level processes, packets must be copied across the kernel/user-space protection boundary. This copying can be minimized by deploying a kernel agent called a packet filter which discards unwanted packets as early as possible. The CMU/Stanford bnet packet filter is the first UNIX based packet filter developed in 1980. It eventually evolved into the Ultrix Packet Filter atDEC, NIT under SunOS, and BPF. Programs print the headers of packets appeared with UNIX workstation. Sun implemented NIT (Network Interface Tap) to capture packets and ether find to print packet headers. The advantage of Unix-based monitoring tools is that users can use other software tools available on UNIX for manipulating and analyzing packet traces.

3. MODULE DESCRIPTION

Modular design means breaking our programming task in to smaller parts. The advantage of modularity is in easy accessing of coding and debugging, also more number of modularity is in easy accessing of coding and debugging, also more number of programmers can engage in a company's software development and the work can be finished quickly .Even very big developments can be finished within a targeted time by splitting the program in to smaller parts.

This project has mainly classified into FIVE MODULES,

They are

- Traffic Analysis System

- Switching manager

- Resource Controlling

- Bandwidth Monitoring

- Router Analysis System

Traffic Analysis System is further divided into further small parts known as sub modules, the sub modules are as,

Packet Sniffing

Packet Decoding

Packet Analysis

PACKET SNIFFING:

A packet sniffer is a wiretap device that plugs into computer networks; unlike telephone circuits, computer networks are shared communication channels. Sharing means that computers can receive information that was intended for other machines (HUB). To capture the information going over the network is called sniffing. Most popular way of connecting computers is through Ethernet. Ethernet protocol works by sending packet information to all the hosts on the same segment. The packet header contains the address of the destination and source machine. Only the machine with the matching address is supposed to accept the packet. A machine that is accepting all packets, no matter what the packet header says, is said to be in promiscuous mode. Because, in a normal networking environment, account and password information is passed along Ethernet in clear-text, it is not hard for an intruder once they obtain root to put a machine into promiscuous mode and by sniffing, compromise all the machines on the net. Promiscuous mode in the NDIS driver to enable the card to listen to data

Traffic. NDIS is an abbreviation for the "Network Driver Interface Specification" and is a

Linux device driver interface that enables a single network interface card (NIC) to support multiple network protocols.

PACKET DECODING:

Packet Decoding is a process of finding out encapsulated packet from a captured packet .Systems Management tool that allows administrators to look at the details of network packets, perform remote captures on a packet anywhere on the network, and gather network statistics about a group of personal computers.

PACKET ANALYSIS:

Real time analysis:

Network traffic is examined by real-time monitors. These monitors test network traffic for a specific set of conditions, and when those conditions are detected, , display events, which may prompt end-user action.

Post capture analysis:

In post-capture analysis, network traffic is saved in a proprietary capture file so that the captured data can be analyzed later, and when certain conditions are detected, displays events, which may prompt end-user action.

Characteristics of Ambient Traffic it is essential to establish a baseline for traffic free of anomalies as a means for calibrating our results. Many studies describe the essential features of network traffic including the standard daily and weekly cycles. 1 shows the byte counts of inbound traffic to campus from the commodity Internet Service Provider during a typical week. The also shows the wavelet decomposition of the signal into high, mid, and low-band components corresponding to the H-, M-, and L parts discussed in Section IV. The regular daily component of the signal is very clear in the low band4. In , we show the byte traffic for the same week at the same level of aggregation as measured by SNMP. In this case traffic was measured by utilizing high-capacity SNMP interface octet counters rather than by selecting the specific BGP Autonomous System number from the exported flow records. the decompositions in s 1 and 2 are nearly indistinguishable. The primary difference is slightly more high-frequency jitter in the flow-export-based signal5.

Characteristics of Flash Crowds the first step in our analysis of anomalies is to focus on flash crowd events. Our choice of investigating flash crowds first is due to their long lived features which should be exposed by the mid and low-band filters. This suggests that analysis of either SNMP or flow-based data is suitable, however we focus on flow based data. Shows the decomposition of eight weeks of outbound traffic from one of the campus' class-B networks which contain a popular ftp mirror server for Linux releases. During these weeks, two releases of popular Linux distributions occurred, resulting in heavy use of the campus mirror server. In this and subsequent s, grey boxes were added by hand to focus the reader's attention on the particular anomaly (the position of each box was determined by simple visual inspection). Attention should again focus on the low-band signal. The low band signal highlights each event clearly as well as the lived aspect of the second event. Another way to consider the effects of flash crowds is from the perspective of their impact on the typical sizes of packets. The intuition here is that large data/software releases should result in an increase in average packet size for outbound HTTP traffic and therefore packet size may be an effective means for exposing flash crowds. Eight weeks of outbound HTTP traffic and highlights another flash crowd anomaly from our data set. This anomaly was the result of network packet traces being made available on a campus web server. Curiously, for unrelated reasons, the server for this data set had its kernel customized to use a TCP Maximum Segment Size of 512. Both the mid-band and low-band signals in this show that the outbound HTTP packets from this server were, in fact, able to redefine the campus' average HTTP packet size. It is also interesting to note that the packet size signal becomes more stable (the signal has fewer artifacts) during this flash crowd event.

The IMAPIT Analysis Environment The IMAPIT environment we developed for this study has two significant components: a data archive and a signal analysis platform. The data archive uses RRDTOOL (mentioned in Section III) which provides a flexible database and front-end for our IP flow and SNMP data. The analysis platform is a frame let signal analysis and visualization system that enables a wide range of wavelet systems to be applied to signals. Signal manipulation and data preparation in IMAPIT analysis was performed using a modified version of the freely-available Last Wave software package [26]. In addition to wavelet decomposition, implemented our deviation score method for exposing signal anomalies. Both flow and SNMP time-series data can be used as input to compute the deviation score of a signal. Calculating the deviation score has four parameters: an Window size, an H-window size, and the weights assigned to the M- and H-parts. We used only a single constant set of parameter values to produce the results in Section V. However, one can tune IMAP sensitivity to instantaneous events by modifying the moving window size used In constructing the local deviation; a smaller window is more sensitive. The weights used on the M and H-parts allow one to emphasize events of longer or shorter duration. In our analysis, we found most anomalies in our journal had deviation scores of 2.0 or higher. We consider scores of 2.0 or higher as high-confidence, and those with scores below 1.25 as low-confidence. Where deviation scores are plotted in figures in Section V, we show the score as a grey band clipped between 1.25 and 2.0 on the vertical axis, as labeled on the right side. An evaluation of deviation scoring as a means for anomaly detection can be found in Section VI. V. RESULTS .We decomposes each signal under analysis into three distinct signals (low/mid/high). As a point of reference, if the signal under analysis is 1 week long (the period used to evaluate short lived anomalies), the H-part is frequency levels 1,2,3; the Mpart is frequency levels 4,5; the L-part is the remainder. If the signal is 8 weeks long (the period used to evaluate long-lived anomalies), the M-part is frequency levels 6,7,8; and the L-part is the remainder.

Hidden Anomalies Through the application of our methods, we were able to identify a number of hidden anomalies in our data sets. These are anomalies that had not been previously identified by the campus network engineers. The majority of these were DoS attacks most of which could be identified by careful visual inspection. One hidden anomaly of interest is shown in figure. This figure shows outbound traffic from one of the campus' class- B networks during a four week period. The duration of this anomaly prevented its detection via deviation score. Decomposition enabled us to identify an anomaly that had previously gone unnoticed and was not easily seen visually. The anomaly is most visible following December 18th in the low-band graph where traffic remained uncharacteristically high across two subsequent days. Follow-up investigation using our repository of flow records showed this anomaly to have been due to of network abuse in which four campus hosts had their security compromised and were being remotely operated as peer-to-peer file Servers.

Detection of anomalies while it is unlikely that a single method for detecting anomalies will be ever found3, we have taken a first step at developing an automated method for identifying irregularities in the measured data. Our algorithm, which we call a deviation score, has the following ingredients: 1. Normalize the H- and M-parts to have variance one. Compute the local variability of the (normalized) H- and M-parts by computing the variance of the data falling within a moving window of specified size. The length of this moving window should depend on the duration of the anomalies that captured. If we denote the duration of the anomaly by t0 and the time length of the window for the local deviation by t1, we need, in the ideal situation, to have q t0=t1 _ 1. If the quotient q is too small, the anomaly may be blurred and lost.

Switching manager

Switching manager deals with controlling of Network traffic based on the yielded results of the traffic analysis system, administrator can control the existing network's traffic. One can also identify unwanted traffic can block it; can prioritize traffic within network by policy based bandwidth allocation.

Traffic Controlling: Queuing, Traffic Shaping, and Policing

Traffic Controlling works only if we have bandwidth to spare on one of our connections. Even the most sophisticated traffic balancing techniques won't help us when there is just too much traffic. When the output queues for interfaces start filling up, interactive protocols start noticing delays, and bulk protocols start noticing lower throughput. The best way to handle this would be to get more bandwidth, but with some smart queuing techniques, it's possible to increase performance for some protocols or sessions without hurting others very much. Or just give way to "important" packets and let less important traffic suffer. There are three ways to accomplish this: special queuing strategies, traffic shaping, and rate limiting. Before choosing one, we should know how each interacts with TCP. Nearly all applications that run over the Internet use the TCP "on top of" IP. IP can only transmit packets of a limited size, and the packets may arrive corrupted by bit errors on the communications medium, in the wrong order, or not at all. Also, IP provides no way for applications to address a specific program running on the destination host. All this missing functionality is implemented in TCP. The characteristics of TCP are:

Stream interface: Any and all bytes the application writes to the stream come out in the same order at the application running on the remote host. There is no packet size limit TCP breaks up the communication into packets as needed.

Integrity and reliability: TCP performs a checksum calculation over every segment (packet) and throws away the segment if the checksum fails. It keeps resending packets until the data is received (and acknowledged) successfully by the other end, or until it becomes apparent that the communications channel is unusable, and the connection times out.

Multiplexing: TCP implements "ports" to multiplex different communication streams between two hosts, so applications can address a specific application running on the remote host. For instance, web servers usually live on port 80. When a web browser contacts a server, it also selects a source port number so that the web page can be sent back to this port, and the page will end up with the right browser process. Well-known server ports are usually (but not always) below 1024; client source ports are semi randomly selected from a range starting at 1024 or higher.

Congestion control: TCP provides congestion control: it makes sure it doesn't waste resources by sending more traffic than the network can successfully carry to the remote host.

TCP Congestion Control

Apart from the basic self-timing that happens because TCP uses a windowing system where only a limited amount of data may be in transit at any time, there are four additional congestion-related mechanisms in TCP: slow start, congestion avoidance, fast retransmit, and fast recovery.

Slow start

When a TCP connection is initiated, the other side tells the local TCP how much data it's prepared to buffer. This is the "advertised window." Setting up a connection takes three packets: an initial packet with the SYN control bit set (a "SYN packet"), a reply from the target host with both the SYN and ACK bits set, and a final packet from the initiating host back to the target acknowledging the SYN/ACK packet. This is the three-way handshake.

After the three-way handshake, the local (and remote) TCP may transmit data until the advertised window is full. Then it has to wait for an acknowledgment (ACK) for some of this data before it can continue transmitting. When the remote TCP advertises a large window, the local TCP doesn't send a full window's worth of data at once: there may be a low-bandwidth connection somewhere in the path between the two hosts, and the router that terminates this connection may be unable to buffer such a large amount of data until it can traverse the slow connection. Thus, the sending TCP uses a congestion window in addition to the advertised window. The congestion window is initialized as one maximum segment size, and it doubles each time an ACK is received. If the segment size is 1460 bytes (which corresponds to a 1500-byte Ethernet packet minus IP and TCP headers), and the receiver advertises a 8192-byte window, the sending TCP initializes the congestion window to 1460 bytes, transmits the first packet, and waits for an ACK. When the first ACK is received, the congestion window is increased to 2920 bytes, and two packets are transmitted. When the first one of these is ACKed, the congestion window becomes 5840 bytes, so four packets may now be in transit. One packet is still unacknowledged, so three new packets are transmitted. After receiving the next ACK, the congestion window increases beyond the advertised window, so now it's the advertised window that limits the amount of unacknowledged data allowed to be underway.

Congestion avoidance

Congestion avoidance introduces another variable: the slow start threshold size (ssthresh). When a connection is initialized, the thresh is set to 65,535 bytes (the maximum possible advertised window). As long as no data is lost, the slow start algorithm is used until the congestion window reaches its full size. If TCP receives an out-of-order ACK, however, congestion avoidance comes into play. An out-of-order ACK is an acknowledgment for data that was already acknowledged before. This happens when a packet gets lost: the receiving TCP sends an ACK for the data up to the lost packet, indicating, TCP ACKs are cumulative Upon receiving a duplicate ACK, the sending TCP assumes the unacknowledged data has been lost because of congestion, and the ssthresh and also the congestion window are set to half of the current window size, as long as this is at least two times the maximum segment size. After this, the congestion window is allowed to grow only very slowly, to avoid immediate return of the congestion. If the sending TCP doesn't see any ACKs at all for some period of time, it assumes massive congestion and triggers slow start, in addition to lowering the ssthresh. So as long as the congestion window is smaller than or equal to the ssthresh, slow start is executed (congestion window doubles after each ACK), and after that congestion avoidance (congestion window grows slowly).

Fast retransmit and fast recovery

When TCP receives three out-of-order ACKs in a row, it assumes that just a single packet was lost. (One or two out-or-order ACKs are likely to be the result of packet reordering on the network.) It then retransmits the packet it thinks has been lost, without waiting for the regular retransmit timer to expire. The ssthresh is set as per congestion avoidance, but the congestion window is set to the ssthresh plus three maximum segments: this is the amount of data that was successfully received by the other end, as indicated by the out-of-order ACKs. The result is that TCP slows down a bit, but not too much, because there is obviously still a reasonable amount of data coming through.

TCP under Packet Loss and Delay Conditions

The result of these four mechanisms is that TCP slows down a lot when multiple packets are lost. The problem is even worse when the round-trip times are long, because the use of windows limits TCP's throughput to a window size per round-trip-time. This means that even with the maximum window size of just under 64 KB (without the TCP high-performance extensions enabled), TCP performance over a transcontinental circuit with a round trip delay of 70 ms will not exceed 900 Kbps. When a packet is lost, this speed is nearly halved, and it takes hundreds of successfully acknowledged packets to get back up to the original window size. So even sporadic packet loss can bring down the effectively used bandwidth for a single TCP session over a high-delay path. This means that packet loss can be tolerated only on low-delay connections, and only as long as those connections are not part of a high-delay path. The behavior of the two main categories of non-TCP applications under packet loss conditions is different. These categories are multimedia (streaming audio and video) and applications based on small transactions that don't need a lot of overhead, such as DNS. Streaming audio and video are generally not too sensitive to packet loss, although the audio/video quality will suffer slightly. For things like DNS lookups, packet loss slows down individual transactions a lot (they time out and have to be repeated), but the performance penalty doesn't carry over to transactions that didn't lose packets themselves. Because non-TCP applications don't really react to packet loss, they often exacerbate the congestion by continuing to send more traffic than the connection can handle. Although some lost packets are the result of bit errors on the physical medium or temporary routing inconsistencies, the typical reason packets are lost is congestion: too much traffic. If a router has a single OC-3 (155 Mbps) connection to a popular destination, and 200 Mbps of traffic comes in for this destination, something has to give. The first thing the router will do is to put packets that can't be transmitted immediately in a queue. IP traffic tends to have a lot of bursts: traffic can get high for short periods of time ranging from a fraction of a second to a few seconds. The queue helps smooth out these bursts, at the expense of some additional delay for the queued packets, but at least they're not lost. If the excessive traffic volume persists, the queue fills up. The router has no other choice than to discard any additional packets that come in when the queue is full. This is called a "tail drop." The TCP anti-congestion measures are designed to avoid exactly this situation, so in most cases, all the TCP sessions will slow down so the congestion clears up for the most part. If the congestion is bad, however, this may not be enough. If a connection is used for many short-lived TCP sessions (such as web or email traffic), the sheer number of initial packets (when TCP is still in slow start) may be enough to cause congestion. Non-TCP applications can also easily cause congestion because they lack TCP's sophisticated congestion-avoidance techniques.

Traffic Controlling for Incoming Traffic

The local router determines the route taken by outgoing packets; it isn't difficult to balance outbound traffic over multiple connections. The situation for inbound traffic is different. There are only a few routes we can influence to shift incoming traffic patterns: one for each address block for each ISP we connect to, instead of tens of thousands for outgoing traffic. In the typical multi homing case, with one address block and two ISPs, this leaves us with just two routes that can be manipulated to change inbound traffic distribution. This manipulation can take the form of:

Setting the MED

Prepending the AS path

Setting outbound communities

We can also decide to "cheat" and break up a single address block that would normally be announced as a single route into several smaller blocks, so we can announce each separately, with different properties, for more fine-grained control.

Setting the MED

The MED metric is intended to be used only between two neighboring ASes. It isn't communicated to ASes beyond the neighboring AS. For this reason, the use of the MED in balancing incoming traffic is limited to the situation where there is more than one connection between two ASes: setting a higher MED for one route will make the traffic flow over the other. This is useful when one of the connections is of a much higher bandwidth, and the second one is a lower-bandwidth backup. Because we don't know whether the bgp best path med missing-as-worst command is in effect on the router terminating our connections at the other end, always set MEDs for the routes over both connections.

Prepending Outbound AS Paths

When we bring up our second BGP session, we soon get to see how much traffic our routes attract over both ISPs. In many cases, the traffic will be distributed fairly equally over both connections, or one connection receives more traffic but there is enough spare capacity (for inbound traffic) so this isn't a problem. But maybe one connection attracts more traffic than it can handle, or we have one big pipe and a smaller one, and the traffic volumes are equal (or at least they try to be). Under these circumstances, we'll want to shift part of the incoming traffic load from one connection to the other. The most powerful option to change incoming traffic patters is making the AS path longer. This is effective, because the path is preserved between ASes, and BGP implementations use the path length early in the route selection algorithm. The biggest problem with making the AS path longer by prepending our own AS number to the path one or more extra times is that it may be too effective.

Setting Outbound Communities

In many cases we'll want to prepend the path for certain upstream networks or peers of a transit ISP and not for others. For instance, if two of our ISPs have a transit network in common, we might want to have one ISP announce a prepended path to this transit network without changing the path that other transit networks and peers see over that ISP. To avoid spending a lot of time implementing this type of policy upon customer request, many ISPs provide their customers (and sometimes their peers) with a list of communities that trigger actions such as path prepending and setting the Local Preference. This can then be done for each route individually.

Resource Controlling

Resource Controlling deals with monitoring and managing of network resources its main job is to monitor the flow of data or the transmission rate between two end points of network based on these feasibility results Switching manager is alerted and starts controlling the traffic.

Bandwidth Monitoring

Bandwidth Monitoring deals with monitoring and analyzing the total network bandwidth as well as internet bandwidth, total network bandwidth monitoring is used to monitor over all traffic and manipulates every protocols currently active protocols and monitors their status and calculates the amount of packet transmission done by each protocol active on the network

Router Analysis System

Router Analysis System deals with performance and reliability analysis of an inert face or two endpoints. Queuing happens only when the interface is busy. As long as the interface is idle, packets will be transmitted without special treatment. Regular queues invariably employ the first in, first out (FIFO) principle: the packet that has been waiting the longest is transmitted first. When the queue is full, and additional packets come in, tail drops happen. More sophisticated queuing mechanisms usually employ several queues. Packets are classified by user-configurable means and then placed in the appropriate queue. Then, when the interface is ready to transmit, a queue from which the next packet will be transmitted is selected as per the queuing algorithm Queuing happens only when the interface is busy. As long as the interface is idle, packets will be transmitted without special treatment. Regular queues invariably employ the first in, first out (FIFO) principle: the packet that has been waiting the longest is transmitted first. When the queue is full, and additional packets come in, tail drops happen. More sophisticated queuing mechanisms usually employ several queues. Packets are classified by user-configurable means and then placed in the appropriate queue. Then, when the interface is ready to transmit, a queue from which the next packet will be transmitted is selected as per the queuing algorithm. Cisco routers support several queuing strategies: FIFO, WFQ, RED, priority, and custom queuing. Note that special queuing mechanisms have effect only when it's not possible immediately to transmit a packet over the output interface. If the interface is idle and there are no queued packets, the new packet is transmitted immediately FIFO queuing is the most basic queuing strategy: packets are transmitted in the same order they come in.

First in, first out

FIFO queuing is the most basic queuing strategy: packets are transmitted in the same order they come in. This is the default for fast interfaces. FIFO queuing is enabled by removing all other queuing mechanisms

Weighted fair queuing

WFQ tries to allocate bandwidth fairly to different conversations (typically TCP sessions) so high-bandwidth sessions don't get to monopolize the connection. WFQ is the default for lower-bandwidth interfaces. It can be enabled with:

Random early detect

RED starts to drop packets as the output queue fills up, in order to trigger congestion-avoidance in TCP. The sessions with the most traffic are most likely to experience a dropped packet, so those are the ones that slow down the most. Weighted random early detect (WRED) takes the priority value in the IP header into account and starts dropping low-priority packets earlier than their higher-priority counterparts. Unlike WFQ, priority, and custom queuing, RED doesn't need much processing time and can be used on high-speed interfaces. It needs a transmit queue bigger than the default 40-packet queue to be able to start dropping packets early and avoid tail drops.

Priority queuing

This queuing strategy allows traffic to be classified as high, normal, medium, or low priority. If there is any high-priority traffic, it's transmitted first, then medium-priority traffic, and so on. This can slow down lower-priority traffic a lot or even completely block it if there is enough higher-priority traffic to fill the entire bandwidth capacity.

Custom queuing

Custom queuing has a large number of queues and transmits a configurable amount of data from a queue before proceeding to the next. This queuing strategy makes it possible to guarantee a minimum amount of bandwidth for certain traffic types, while at the same time making the bandwidth that is left unused available to other traffic types.

4. DATAFLOW DIAGRAM

4.1. DATAFLOW DIAGRAM

ZEROTH LEVEL

FIRST LEVEL

SECOND LEVEL

5. TESTING AND IMPLEMENTATION

5.1 System testing

System testing does not test the software but rather the integration of each module in the system. If also tests to find discrepancies between the system and its original objectives, current specifications and system documentation. The primary concern is a compatibility of individual modules.

5.1.1Testing Methodologies

5.1.2 Peak load Test

Determine weather the system will handled the volume of activities that occur when the system is at the Peak of its processing demand. Example : All terminals are in active communication over the network at the same time.

5.1.3 Performance Test

This testing is designed to test the run time performance of software within the context of an integrated system. This testing occurs throughout all steps in the testing process. Example: Response time for inquiry when system is fully loaded with operating data.

51.4 Recovery Test

This is a system test that forces that software to fail in a variety of ways and verifies automatic, re-initialization, check pointing mechanisms, data for recovery, and restart are each evaluated for correctness. If recovery requires human intervention, the mean time to repair is evaluated to determine whether it is within acceptance limits.

Example: Load backup copy of data and resume processing without data or integrity loss.

5.2 Other Tests

During the study phase, we explored the internet for the availability of other Network testing Software. But we did not come across any simple software tool for those purpose. We found some complex software like ns (Network simulator from Berkeley University). And Dummy Net Emulator

5.2.1 Dummy Net Emulator

Dummy net is a flexible tool originally designed for testing networking protocols, and since then (mis)used for bandwidth management. It simulates/enforces queue and bandwidth limitations, delays, packet losses, and multipath effects. It also implements a variant of Weighted Fair Queuing called WF2Q+. It can be used on user's workstations, or on FreeBSD machines acting as routers or bridges

5.1.3 The Network Simulator - ns-2

Ns is a discrete event simulator targeted at networking research. Ns provides substantial support for simulation of TCP, routing, and multicast protocols over wired and wireless (local and satellite) networks.

Ns began as a variant of the REAL network simulator in 1989 and has evolved substantially over the past few years. In 1995 ns development was supported by DARPA through the VINT project at LBL, Xerox PARC, UCB, and USC/ISI. Currently ns development is support through DARPA with SAMAN and through NSF with CONSER, both in collaboration with other researchers including ACIRI. Ns has always included substantial contributions from other researchers, including wireless code from the UCB Daedelus and CMU Monarch projects and Sun Microsystems.

6. CONCLUSION.

MULTIPERFORMANCE TRAFFIC ANALYSING SYSTEM is a Network Switching manager whose sole purpose is to control and maintain the real time network traffic in a unified manner. This is an intranet based project and hence the implementation of bandwidth allocation and CSMA/CD algorithms in an efficient manner. The validation and monitoring of real time network traffic is carried out through C programming Language which is one of the most efficient programming languages used in network application.

MULTIPERFORMANCE TRAFFIC ANALYSING SYSTEM is developed in order achieve Traffic Grooming of a network in an efficient manner without changing the existing network infrastructure. Development the above said software is developed using a gifted open source platform namely LINUX. This product will make use of tools available in Linux, gcc the GNU c compiler and the graphical environment using GTK (Gimp tool kit) which again comes free of cost.

Thus this tool can be used by anybody and everybody who is willing to maximize the performance of network with existing resources.
7. FUTURE ENHANCEMENTS
The Process going on any system can change at any point of time. So, any package must be flexible enough to make changes taking place.

We have realized the limitations of the system. Steps are being taken for deposing these limitations by introducing new features into the system. This deposition subsequently leads to improvements of the system.

The application will me more equipped with provisions of controlling traffic on various networks such as ATM ,SONET ,TOKEN RING and mainly in WIRELESS NETWOKRS type of networks, And also by improving the flexibility of the application .

An efficient algorithm is going to be implemented which is based on time slicing and band width allocation based on policing methods which make the application suitable for different types of network.

APPENDIX A

NOMENCLATURE:

BPF Berkeley Packet Filter

IP Internet Protocol

TCP Transmission Control Protocol

HTTP Hyper Text Transfer Protocol

FTP File Transfer Protocol

ICMP Internet Control Message

IGMP Internet Group Management

GGP Gateway-to-Gateway

IP IP in IP (encasulation)

ST Stream

TCP Transmission Control

UCL UCL

EGP Exterior Gateway Protocol

IGP any private interior gateway

UDP User Datagram

SIP Simple Internet Protocol

ISO-IP ISO Internet Protocol

LARP Locus Address Resolution Protocol

MTP Multicast Transport Protocol

AX.25 AX.25 Frames

IPIP IP-within-IP Encapsulation Protocol

ETHERIP Ethernet-within-IP Encapsulation

MAC Media Access Control

API Application Programming Interface

NIT Network Interface Tab

BSD Berkeley Standard Distribution

LAN Local Area Network

APPENDIX B

CODINGS:

PACKET CAPTURING

CAPTURING A SINGLE PACKET

#include <stdio.h>

#include <stdlib.h>

#include <pcap.h>

#include <errno.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

int main(int argc, char **argv)

{

char *dev;

char *net;

char *mask;

int ret;

char errbuf[PCAP_ERRBUF_SIZE];

bpf_u_int32 netp;

bpf_u_int32 maskp;

struct in_addr addr;

dev = pcap_lookupdev(errbuf);

if(dev == NULL)

{

printf("%s\n",errbuf);

exit(1);

}

printf("DEV: %s\n",dev);

ret = pcap_lookupnet(dev,&netp,&maskp,errbuf);

if(ret == -1)

{

printf("%s\n",errbuf);

exit(1); }

addr.s_addr = netp;

net = inet_ntoa(addr);

if(net == NULL)

{

perror("inet_ntoa");

exit(1);

}

printf("NET: %s\n",net);

addr.s_addr = maskp;

mask = inet_ntoa(addr);

if(mask == NULL)

{

perror("inet_ntoa");

exit(1);

}

printf("MASK: %s\n",mask);

return 0;

}

CAPTURING INFINITE PACKETS:

#include "pcap-int.h"

#ifdef HAVE_OS_PROTO_H

#include "os-proto.h"

#endif

int

pcap_read(pcap_t *p, int cnt, pcap_handler callback, u_char *user)

{

int cc;

register struct snoopheader *sh;

register int datalen;

register int caplen;

register u_char *cp;

again:

cc = read(p->fd, (char *)p->buffer, p->bufsize);

if (cc < 0) {

switch (errno) {

case EINTR:

goto again;

case EWOULDBLOCK:

return (0);

snprintf(p->errbuf, sizeof(p->errbuf),

"read: %s", pcap_strerror(errno));

return (-1);

}

sh = (struct snoopheader *)p->buffer;

datalen = sh->snoop_packetlen;

caplen = (datalen < p->snapshot) ? datalen : p->snapshot;

cp = (u_char *)(sh + 1) + p->offset;

if (p->fcode.bf_insns == NULL ||

bpf_filter(p->fcode.bf_insns, cp, datalen, caplen)) {

struct pcap_pkthdr h;

++p->md.stat.ps_recv;

h.ts.tv_sec = sh->snoop_timestamp.tv_sec;

h.ts.tv_usec = sh->snoop_timestamp.tv_usec;

h.len = datalen;

h.caplen = caplen;

(*callback)(user, &h, cp);

return (1);

}

return (0);

}

int

pcap_stats(pcap_t *p, struct pcap_stat *ps)

{

register struct rawstats *rs;

struct rawstats rawstats;

rs = &rawstats;

memset(rs, 0, sizeof(*rs));

if (ioctl(p->fd, SIOCRAWSTATS, (char *)rs) < 0) {

snprintf(p->errbuf, sizeof(p->errbuf),

"SIOCRAWSTATS: %s", pcap_strerror(errno));

return (-1);

}

*ps = p->md.stat;

return (0);

}

pcap_t *

pcap_open_live(char *device, int snaplen, int promisc, int to_ms, char *ebuf)

{

int fd;

struct sockaddr_raw sr;

struct snoopfilter sf;

u_int v;

int ll_hdrlen;

int snooplen;

pcap_t *p;

struct ifreq ifr;

p = (pcap_t *)malloc(sizeof(*p));

if (p == NULL) {

snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s",

pcap_strerror(errno));

return (NULL);

}

memset(p, 0, sizeof(*p));

fd = socket(PF_RAW, SOCK_RAW, RAWPROTO_SNOOP);

if (fd < 0) {

snprintf(ebuf, PCAP_ERRBUF_SIZE, "snoop socket: %s",

pcap_strerror(errno));

goto bad;

}

p->fd = fd;

memset(&sr, 0, sizeof(sr));

sr.sr_family = AF_RAW;

(void)strncpy(sr.sr_ifname, device, sizeof(sr.sr_ifname));

if (bind(fd, (struct sockaddr *)&sr, sizeof(sr))) {

snprintf(ebuf, PCAP_ERRBUF_SIZE, "snoop bind: %s",

pcap_strerror(errno));

goto bad;

}

memset(&sf, 0, sizeof(sf));

if (ioctl(fd, SIOCADDSNOOP, &sf) < 0) {

snprintf(ebuf, PCAP_ERRBUF_SIZE, "SIOCADDSNOOP: %s",

pcap_strerror(errno));

goto bad;

}

v = 64 * 1024;

(void)setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (char *)&v, sizeof(v));

if (strncmp("et", device, 2) == 0 || /* Challenge 10 Mbit */

strncmp("ec", device, 2) == 0 ||

strncmp("ef", device, 2) == 0 ||

strncmp("eg", device, 2) == 0 ||

strncmp("gfe", device, 3) == 0 ||

strncmp("fxp", device, 3) == 0 || /* Challenge VME Enet */

strncmp("ep", device, 2) == 0 || /* Challenge 8x10 Mbit EPLEX */

strncmp("vfe", device, 3) == 0 || /* Challenge VME 100Mbit */

strncmp("fa", device, 2) == 0 ||

strncmp("qaa", device, 3) == 0 ||

strncmp("cip", device, 3) == 0 ||

strncmp("el", device, 2) == 0) {

p->linktype = DLT_EN10MB;

p->offset = RAW_HDRPAD(sizeof(struct ether_header));

ll_hdrlen = sizeof(struct ether_header);

} else if (strncmp("ipg", device, 3) == 0 ||

strncmp("rns", device, 3) == 0 || strncmp("xpi", device, 3) == 0) {

p->linktype = DLT_FDDI;

p->offset = 3; ll_hdrlen = 13;

} else if (strncmp("ppp", device, 3) == 0) {

p->linktype = DLT_RAW;

ll_hdrlen = 0; /* DLT_RAW meaning "no PPP header, just the IP packet"? */

} else if (strncmp("lo", device, 2) == 0) {

p->linktype = DLT_NULL;

ll_hdrlen = 4; /* is this just like BSD's loopback device? */

} else {

snprintf(ebuf, PCAP_ERRBUF_SIZE,

"snoop: unknown physical layer type");

goto bad;

}

#ifdef SIOCGIFMTU

(void)strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));

if (ioctl(fd, SIOCGIFMTU, (char *)&ifr) < 0) {

snprintf(ebuf, PCAP_ERRBUF_SIZE, "SIOCGIFMTU: %s",

pcap_strerror(errno));

goto bad;

}

#ifndef ifr_mtu

#define ifr_mtu ifr_metric

#endif

if (snaplen > ifr.ifr_mtu + ll_hdrlen)

snaplen = ifr.ifr_mtu + ll_hdrlen;

#endif

snooplen = snaplen - ll_hdrlen;

if (snooplen < 0)

snooplen = 0;

if (ioctl(fd, SIOCSNOOPLEN, &snooplen) < 0) {

snprintf(ebuf, PCAP_ERRBUF_SIZE, "SNOOPLEN: %s",

pcap_strerror(errno));

goto bad;

}

p->snapshot = snaplen;

v = 1;

if (ioctl(fd, SIOCSNOOPING, &v) < 0) {

snprintf(ebuf, PCAP_ERRBUF_SIZE, "SNOOPING: %s",

pcap_strerror(errno));

goto bad;

}

p->bufsize = 4096;

p->buffer = (u_char *)malloc(p->bufsize);

if (p->buffer == NULL) {

snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s",

pcap_strerror(errno));

goto bad;

}

return (p);

bad:

(void)close(fd);

free(p);

return (NULL);

}

int

pcap_setfilter(pcap_t *p, struct bpf_program *fp)

{

if (install_bpf_program(p, fp) < 0)

return (-1);

return (0);

}

ANALYSING NETWORK TRAFFIC:

#include "interface.h"

struct packet_header {

#ifdef IBMRTPC

struct LengthWords length;

struct tap_header tap;

#endif

u_char packet[8];

};

extern int errno;

#define BUFSPACE (4*1024)

/* Forwards */

static void efReadError(int, char *);

void

readloop(int cnt, int if_fd, struct bpf_program *fp, printfunc printit)

{

#ifdef IBMRTPC

register struct packet_header *ph;

register u_char *bp;

register int inc;

#else /* !IBMRTPC */

static struct timeval tv = { 0 };

#endif /* IBMRTPC */

register int cc, caplen;

register struct bpf_insn *fcode = fp->bf_insns;

union {

struct packet_header hdr;

u_char p[BUFSPACE];

u_short s;

} buf;

while (1) {

if ((cc = read(if_fd, (char *)buf.p, sizeof(buf))) < 0)

efReadError(if_fd, "reader");

#ifdef IBMRTPC

bp = buf.p;

while