Need and practical application of objects

I. INTRODUCTION
There are different object oriented languages used today. But the leading commercial object oriented languages are few in number, some like C++, small talk, java, etc. Object oriented programming provides a powerful and new model for writing computer software. They are all about objects. They are the building Sblock of OOP's and usually defined as variables or data structures that encapsulate behavior and data in a programmed unit. Objects are individual instances of a class. We can say that an object is a part of a program that knows how to perform certain actions and to communicate with other parts of the program. Earlier functions were stated as "black boxes" that take an input and gives out an output. Objects can be considered as "smart black boxes" that can store their own set of data. Creating a program with objects helps a programmer to modify the program after the real world. Simple tasks are performed by each parts of a program. When all the parts are combined into a program, it can result in a very complex and useful application. This approach speeds the growth of fresh programs and enhances the maintenance, modifiability and reusability of software's.
II. USES AND APPLICATION OF OBJECTS
Objects are approached, created or deleted during run-time of a program. They interact with the users but they also communicate with each other and they can be kept together in arrays, groups, collections or lists. The question that comes up is that, "Shouldn't you need to look inside an object?". Well in case if you are a programmer, you may need to, but if you are an end user, you will be interested in getting the required data. People are not tempted to straight away modify the object. If one does that, they would be tampering with the features of how the object works. If the programmer who programmed the object makes any changes to the details of the object, the software would no longer be working. As long as one considers objects as boxes that send and receives messages, the software is guaranteed to work. Software is updated over time. Software breaks down when someone tries to make alterations to it. By using objects, the user is less tempted to make alterations.

Real world objects share two properties: they all have behavior and state. Dogs have state like breed, name, color and behavior like barking, fetching...etc. Cars have state like direction, speed, fuel conception, and behavior like accelerate, break, start, stop, turn...etc. Documents on a web site have state like URL, content, titles, and behavior like open, close, reload...etc. Recognizing the real world object's state and behavior is a good way to begin objects oriented programming. The real world objects differ in complexity and some objects may also contain other objects. For example, desktop lamp may have only two likely states like on and off, and two likely behaviors like turn on and off while a desktop radio may have additional features. These real world situations all interprets the world of object oriented programming.

Software objects are similar to real world objects as they too have state and behavior. An object collects its state in fields, i.e, they store the variables in some programming languages and shows its behavior by methods, i.e, exposes its functions in some programming languages. Method works on the internal state of an object and acts as a primary mechanism for communication between the objects. A basic principle of object oriented programming is data encapsulation where internal state is hidden and required interactions are performed through an object's method. Information hiding is another key feature where the features of its internal application remain hidden from the outside world.

Object oriented programming is used in ATM software; hospital management software; banking software's, air traffic control system...etc. 75-85% of the development cost on the program is spent for its maintenance state where bugs are fixed, features are improved, and the program is amended to keep progress with changing domain requirements. Expanding software and reducing the cost of changing is the fundamental objective of object oriented programming. For example, each aircraft will have data depicting velocity, height, position; and methods for simulating movement, projecting its tract and so on. "If aircraft are assigned to flight paths by different protocols in different traffic control r�gimes, then we would expect to find just one part of the software within which assignment (and related functions like re-assignment etc) is dealt with; conversely, in this part, nothing else is dealt with. The benefit of this strict separation of concerns is that the behavior of the system can be changed just by substituting one chunk of software for another; and conversely, making such a substitution should affect nothing else". We can see that object oriented programming is used in the above application.
III. PROGRAM
#include

class rectangle // rectangle is the name of the class

{

Int x, y;

Public: //public visibility label

void set_values (int, int); //function declaration

Int area() //function in which the result is calculated

{

return (x*y); //returns the result to main function

}

}; //end of class

Void rectangle::set_values (int a, int b) //function definition

{

x=a;

y=b;

}

Int main()

{

rectangle rect; // object named rect is being creating

rect.set_values (3, 4); // values are being passed to the function set_values.

rectb.set_values (5, 6);

cout<<< rect.area(); // result returned from function area ()

return 0;

}

In this program we declare a class called rectangle and two objects or instances of this class called rect and rectb. Each one of them has its own member variables and member functions. This class contains 4 members: two data members of type int, i.e, x and y; with private access (since class has private as their default visibility mode) and two member functions with public access: set_values () and area (). The only members of rect that we cannot access from the program outside the class are x and y, because they have private access and they can only be referred from within other members of the same class. We have used a scope resolution operator (::) where it is used to define a member of a class from outside the class definition. In this program, we see that the call to rect.area () does not give the same result as that to rectb.area (). This is because each object of class rectangle has its own variables x and y as they have their own function variables set_values () and area () that each uses its object's own variables to operate.
IV. CONCLUSION
Objects are items that are separately built, manipulated, and represent real world entity in an abstract way. Objects are ways of binding parts of programs into small, manageable pieces. They are black boxes which send and receive messages. They are simply a definition for a type of data to be stored. OPP's provides a new and powerful way for writing computer software's. Small talk provides a pure object oriented environment, with more rapid development time and much flexibility and power. Java assures much for Web-enabling programs. An instance of an object holds significant information which is manipulated by the program. An object can have more than one instance. Instances of objects keep trace of information, called member data, or instance variables. This is done until it no longer exists. Object instances also know how to perform certain functions, like member functions, or class functions. We have seen the real life application of objects and their importance. Using objects can enhance the maintenance, modifiability and reusability of software's.
REFERENCE
[1] http://www.dlib.org/dlib/february02/goesele/02goesele.html

[2] http://www.softwaredesign.com/objects.html

[3] http://www.intap.net/~drw/cpp/cpp06_01.htm

[4] http://java.sun.com/docs/books/tutorial/java/concepts/object.html

[5] http://cplus.about.com/od/learning1/ss

[6] http://www.cplusplus.com/doc/tutorial/classes/

[7] http://www.comp.lancs.ac.uk/computing/resources/IanS/SE6/PDF/Object-oriented-design.pdf
