Knowledge Base

Knowledge Base
The Knowledge Base holds all the information and memories of an agent. Depending on the agent, the knowledge modeled may be represented in a variety of ways. A well-developed knowledge base is essential in building an effective agent because all the other agent parts draw from it to do their jobs.

There are several ways to represent information, but almost all share a common trait; they make use of symbols - numbers or character strings that represent objects or ideas. These symbols are ideal because they can be easily recognized and processed by computers. Ranging from simple facts to complex relationships, mathematical formulas to intricate concepts, each knowledge base's form of knowledge representation differs to best suit that particular agent's purpose. Described below are but a few of the knowledge representation concepts in existence: procedural, declarative, relational, hierarchical, and temporal.

Procedural representation is perhaps the most common knowledge representation in use. In many ways the simplest, procedural representation defines its facts and variables and the operations and procedures that may be used to manipulate these pieces of data. One crucial weakness of procedural representation is that the methods with which the data is manipulated are permanently intertwined with the actual data, limiting potential program development. Although these hardcoded procedures are not representative of "intelligence," one would be hard pressed to find a single Intelligent Agent without some basic form procedural representation.

Programmers' answer for procedural representation's inherent weakness was declarative knowledge representation. In declarative format, all facts, rules, and relationships are declared and stand separately in the knowledge base. Although it still needs to be processed through some procedural code, this additional layer of organization allows for knowledge to be more easily analyzed and modified.

From here, the types of knowledge representation branch out. One type is relational representation. Relational logic defines objects as having numerous individual properties arranged in a table. By manipulating the data in multiple tables, relationships between objects can be formed or brought up and used by the program. It has been used to great success in commercial business systems. Like all other knowledge representations, relational representation has its weaknesses. In this case, the very method used to represent knowledge limits its use in complex real world problems, though while operating within the bounds of its niche it is quite effective.

Hierarchical knowledge representation is analogous to object-oriented programming in many ways. Its basis is relationships and sharing of knowledge between related constructs. Seeing common use in taxonomic functions, Hierarchical representation is ideal for modeling "is a" relationships; The fly is an insect, an insect is an animal, and so on and so forth. Ascending, each level brings a new level of abstraction from where the agent can draw on for information, for example an insect has six legs, so therefore a fly must have six legs. Like other applications of the object-oriented concept, using a hierarchical knowledge representation to model real world situations is becoming increasingly popular.

It should be noted that the passage of time also warrants attention; most programs operate as if the time were standing still, but in an attempt to inject more realism, and therefore more accuracy, into programs, a special representation called temporal representation is used to represent time.

The implementation of these approaches is also a point of concern. Boolean (propositional) logic was the first and is the simplest logic used for this purpose. The system is simple, where each fact/proposition can be defined as either true or false and rules can then be constructed by combining the booleans. For example: If A is true and B is true, then C is true. The conditions for the rule are called antecedent and the results are called the consequent.

As the successor of boolean logic, predicate logic has all but replaced it. Predicate logic builds on the groundwork of boolean logic, but attributes and relationships can be defined in addition to the basic boolean facts. A concept added with the advent of predicate logic is that of a quantifier; the objects, properties, and relations in the knowledge base can be divided into specific sets depending on the quantifier used.

Now that most of the traditional representations have been explored, there lies the issue of representing uncertainty. Realistically, an agent cannot be expected to have every piece of information it needs all the time to solve a problem, and so it must use inference to make a best guess. Dominant in representing this quandary is Bayes' theorem. The theorem states that the probability of something being true can range from 0.0 (won't happen) to 1.0 (definitely will happen). There are two types of probability to take into consideration, unconditional and conditional. Unconditional probability takes into account the big picture, saying for example that in Russian roulette there is a one out of six chance that there will be a bullet in the chamber. Conditional probability provides for the big picture, but also accounts for the immediate situation. Extending the Russian roulette example, if the trigger has been pulled five times and it's your turn, it's fair to say that you're going to have a hole in your head. Bayes' theorem provides a method for determining the conditional probability, which in this case is hovering somewhere around 1.0. Similar in concept to a neural network, there is also a Bayesian network whose individual nodes represent various conditions and possibilities and their probabilities. This network is used then in reasoning systems to take probability into account while reasoning.

When artificial intelligence was in its infancy, creating knowledge bases was an incredibly daunting task. For any complex problem to be modeled, experts in the relevant fields would have to coordinate with programmers to input in excruciating detail countless pieces of information. Building the knowledge base, never mind the rest of the application, could take years, and this problem was identified and labeled as the "knowledge acquisition bottleneck." To solve this sometimes crippling problem, programmers looked to learning systems for the answer (see Learning Algorithm). Nevertheless, the knowledge base forms the core of an agent, acting in essence as its memory.

