Introduction to neural network

Chapter-1

Introduction to Neural Network
Our pursuit to solve tasks by exploiting the developments in computer technology has motivated a new model of computing based on artificial neural networks or neural network (ANN). ANN are a form of computation inspired by the structure and functions of human brain or in other words, is an emulation of biological neural system. From a practical point of view, an ANN are simply parallel computational system which consists of many simple processing elements connected together in a specific way in order to perform a particular task. Neural networks have seen a lot of interest over the last few years. They are being effectively applied across a wide range of problem domains, such as in areas like finance, medicine, engineering, geology and physics. Neural networks are being widely used in problems of prediction, classification or control and they are capable of modeling extremely complex problems.

The key advantages of using an ANN are as follows:
· An ANN can carry out tasks that a linear program can not

· ANN can continue working without any problem by their parallel nature, event if one of its components fails. This is equivalent to the graceful degradation found in biological systems.

· ANN are very powerful computational devices

· ANN is very noise tolerant therefore they can manage with situations where normal systems would have difficulty.

· ANN learns and therefore does not need to be re-programmed.

· It can be implemented for a wide range of application.

· In principle, they can do anything a logic system can do, and more.

· Its implementation is easy.
There are some disadvantages associated with ANN as
· In 1943 McCulloch-Pitts neuron model was proposed by McCulloch and Pitts In1949 Hebbian learning rule was proposed in a book The Organization of Behavior published by Hebb

· In 1958 simple single layer networks now called Perceptrons was introduced by Rosenblatt.

· In 1969 Minsky and Paperts book Perceptrons demonstrated the limitation of single layer perceptrons, and almost the whole field went into hibernation.

· In 1982 a series of papers on Hopfield networks were published by Hopfield.

· In 1982 the Self-Organising Maps were developed by Kohonen , that now are known by his name.

· In 1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was rediscovered and the whole field took off again.

· In 1990s the Radial Basis Function Networks were developed.

· In 2000s the power of Ensembles of Support Vector Machines and Neural Networks becomes apparent.
Neural Networks vs. conventional computers

One of the characteristics of an ANN is parallelism because the computations of its elements are mostly independent of each other. Neural networks and conventional algorithmic computers complement each other; they are not in competition with each other.

Approaches used to solve a given problem are the main difference between neural networks and conventional computers. Conventional computers use an algorithm to solve a problem (conventional computer follows a set of instructions in order to solve a problem). Therefore, in this case precise steps must be given so that the computer can follow them to solve the problem. Hence, the computer must be given precisely how to solve a problem. This approach limits the problem solving ability of conventional computers.

On the other hand, in ANN, information is processed in much a similar way the human brain does. ANN is made up of a large number of highly interconnected processing units called neurons which works in parallel to solve a specific problem. ANN can learn by examples but they cannot be programmed to carry out a specific task like conventional computers. Furthermore, the examples need to be selected carefully otherwise it may be functioning incorrectly.

Applications for Neural Networks

Neural networks have been effectively applied to wide variety of data-intensive applications, such as:
· Medical Diagnosis A variety of health-related indices such as heart rate, levels of various substances in the blood, respiration rate etc needs to be monitored. ANN based applications are assisting doctors with their diagnosis by analyzing the reported symptoms and data so that the appropriate treatment can be prescribed.

· Credit Rating - A range of information are usually known about an applicant for a loan After training a neural network on historical data, neural network analysis can automatically assign a company's or individuals credit rating based on their financial condition.

· Targeted Marketing ANN can help in finding the set of demographics which have the maximum response rate for a particular marketing drive.

· Voice Recognition ANN can also be used in transcribing oral words into ASCII text.

· Stock Market Forecasting - ANN are being used by many scientific analysts to make predictions about stock prices on the basis of large number of factors such as past performance of other stocks and a variety of economic indicators

· Quality Control we can attach a camera or sensor at the end of a production process to automatically monitor for defects.

· Intelligent Searching ANN can help a search engine to provide the most relevant content and banner ads based on the users' past behavior.

· Process Modeling and Control - ANN model can be created for a physical plant and then using that model best control settings for the plant can be determine.

· Machine Diagnostics ANN can be used to detect failure of a machine so that system can automatically shut down the machine when this occurs.

· Target Recognition In Military application ANN uses video and/or infrared image data to determine if an enemy target is present.

· Fraud Detection it can also be used in applications which detect fraudulent credit card transactions and automatically decline the charge.
The Biological Neurons
After the introduction of basic neurons by McCulloch and Pitts in 1943 (McCulloch & Pitts, 1943) Artificial Neural Networks were emerged. These neurons were offered as models of biological neurons. These were presented as conceptual components for circuits that were able to perform computational tasks. The basic model of the neuron was based on the functionality of a biological neuron.

The human nervous system is made up of three stages that may be represented in following diagram

Receptors: The receptors collect information from the surroundings for example photons on the retina.

Effectors: The effectors produce interactions with the surroundings for example activate muscles.

Arrow: An arrow represents the flow of information/activation for example feed-forward and feedback.

Brain: In this unit we will be principally concerned with the neural network in the middle

The brain is mainly composed of a very large number (about billion) of neurons, highly interconnected (on an average several thousand interconnects/neuron, but this may vary a lot). Each neuron is a specialized cell which can propagate an electrochemical signal. The neuron has following components
· Branching input structure which is called the dendrites

· A cell body,

· A branching output structure which is called the axon.

· The axons of one cell connect to the dendrites of another by means of a synapse.
An electrochemical signal along the axon is fired when a neuron is activated. This signal crosses the synapses to other neurons, which may in turn fire. If the total signal received at the cell body from the dendrites exceeds a certain level then only a neuron fires this level is called the firing threshold. Following figure shows the conceived structure of a human neuron.
Human Neuron
The strength of the signal received by a neuron vitally depends on the effectiveness of the synapses. There is a gap in synapse along with neurotransmitter chemicals on the edge in order to send out a signal across the gap. Donald Hebb postulated that learning consisted mainly in changing the "strength" of synaptic connections.

From a very large number of very simple processing units the brain performs highly complex tasks. Each processing unit performs a weighted sum of its inputs, and then fires a binary signal if the total input the threshold. There is a huge amount of complexity in the brain. Nevertheless, artificial neural networks can also attain some notable results using a model which not much more complex than this.
Artificial Neuron
The fundamental unit for operation of a neural network is an information processing unit known as artificial neuron. Following figure shows a representation of artificial neuron.

The complexity of natural neurons is extremely abstracted while modeling artificial neurons. This significantly simplified model of natural neurons is also called a Threshold Logic Unit. These basically consist of
· A set of synapses or connections that brings in activations from other neurons which are multiplied by weights (strength of the respective signals).

· A processing unit which sums up all the inputs, and then applies a non-linear activation function. Examples are squashing/transfer/threshold function.

· An output sends out the result to other neurons
ANNs unite artificial neurons to process information which are multiplied by weights. The higher a weight of an artificial neuron is, the stronger the input is. We can also have negative weights. The computation of the neuron can be different depending on the weights. We can get the desired output for specific inputs by adjusting the weights of an artificial neuron. However it would be fairly complex to get all the necessary weights manually, when we have an ANN which is consists of hundreds or thousands of neurons. But there are algorithms which can adjust the weights of the ANN in order to get the preferred output from the network. We call this process of adjusting the weights as learning or training.

Preliminaries

Some notations and functions will be used throughout this unit we will present them in this section.

Some Useful Notation

We often need to talk about ordered sets of related numbers(the order is important)

we call them vectors, e.g.

The components xi can be added up to give a scalar (number), e.g.

For example x = (2, 1) denotes a vector

length = sqrt(2*2+1*1)

orientation angle = a

Two vectors of the same length may be added to give another vector, e.g.

Two vectors of the same length may be multiplied to give a scalar, e.g.

To any ambiguity/confusion, we will mostly use the component notation (i.e. explicit indices and summation signs) throughout this module.

We can use the same vector component notation to represent complex things with many more dimensions/indices. For two indices we have matrices, e.g. an m X n matrix

Matrices of the same size can be added or subtracted component by component.

An m X n matrix a can be multiplied with an n X p matrix b to give an m X p matrix c.

This becomes straightforward if we write it in terms of components:

An n component vector can be regarded as a 1 X n or n X 1 matrix.

Node Functions

Sigmoidal MF

The sigmoidal function is a mapping on x, and depends on two parameters a nd c. It is given by

Where a controls the slope at crossover point x=c. following figure shows the sigmoidal for (x; 2, 4).

Sigmoidal MF

Hyperbolic tangent

This is a sigmoidal function given by

Signum function

The threshold or sign function sign(x) is defined as

Piecewise-Linear Functions

These functions are approximations of sigmoid functions
Architecture of Neural Network
In order to confine the spirit of biological neural systems, an artificial neuron is defined as follows:
· It receives a number of inputs. this input can come from original data or from the output of another neurons in a network.. These inputs come in via a connection that has weights (strength). Weights correspond to synaptic effectiveness in a biological neuron. All the neurons in the system also have a single threshold value. To compute activation of neuron the weighted sum of the inputs is taken and then the given threshold is subtracted from the weighted sum (also known as the post-synaptic potential, or PSP, of the neuron).

· The computed activation signal is then passed through an activation function which is also known as a transfer function, to produce the output of the neuron.

· We can use the step activation function that means the neuron's output is 0 if the input is less than zero, and 1 if the input is greater than or equal to 0. In this case the neuron acts similar to the biological neuron. After that subtracting the threshold from the weighted sum and comparing it with zero is equivalent to comparing the weighted sum to the threshold.

· in reality, the step function is not often used in ANN. Also, the weights can be negative, which implies that the synapse has an inhibitory rather than excitatory effect on the neuron(inhibitory neurons are found in the brain).
Now the key question is: how should neurons be connected together? A network contains:
· Inputs: which carry the values of variables of interest in the outside world

· Outputs: which form predictions, or control signals

· Hidden neurons: that plays an internal role in the network.

· Connections: the input, hidden and output neurons need to be connected together.

· Feedforward Structure: Actually a simple network has a feedforward structure in which signals flow from inputs, then forwards via any hidden units, ultimately reaching the output units. These types of structures generally have stable behavior.

· Single-Layer Feed-forward NNs: This network has one input layer and one output layer of processing units. No feed-back connections (acyclic). The synaptic link carrying the weights connects every neuron in input layer to the output neurons. The computation is performed only in the output layer, the input layer only transfers the input signals to output layer therefore it is called single layer feedforward network.

· Multi-Layer Feed-forward NNs: This network has input layer, one output layer, and one or more hidden layers of processing units. The hidden layers sit in between the input and output layers, and are thus hidden from the outside world. The computational units in hidden layer are known as hidden neuron which performs useful intermediate computations and directs the output to further layers. In this type of network no feed-back connections (acyclic).

· Recurrent Structure: While, if the network is recurrent, it contains connections back from later to earlier neurons (contains at least one feedback loop). There iis also a possibility of self feedback loop, the output of neurons is fed back into itself. This type of networks can be unstable, and has very complex dynamics. Recurrent networks are very attractive to researchers whereas so far the feedforward structures have proved most useful in solving real problems

· Partially Connected And Fully Connected Networks: Also, it is possible to describe networks that are partially-connected to only some units in the previous layer; nevertheless, for the majority applications fully-connected networks are better.
Neural Learning Paradigms
Learning is a process by which parameters of an ANN are adapted through stimulation from surroundings. In this process the due to stimulation from surroundings the free parameters undergoes changes and respond to the surroundings in a new manner. Learning algorithms prescribes the process to make system learn by adjusting the synaptic weight of a neuron. Learning methods in a neural network can be classified in the following types
Unsupervised Learning
Generally in a neural network exact nature of relationship between a inputs and outputs is not known, therefore it is not possible to model it directly. The other key feature of neural networks is that they learn the input/output relationship through training. In unsupervised training the desired response is unknown (target output of the system is not known), and no explicit error information can be used to improve network behavior. In this approach suitable weight self-adaptation mechanisms have to be embedded in the trained network. There is no external teacher or critics to help learning process. The network parameters are optimized with respect to a measurecompetitive learning rule is a case of unsupervised learning. The following figure shows the process of unsupervised learning.
Supervised Learning
In supervised learning, the set of training data is collected by a user of the network. The training data consists of set of inputs together with the corresponding outputs, and the network learns to understand the relationship between the two. Training data is usually obtained from historical report.

The desired response of the network is given by a teacher as an error measure. Following figure shows the example of supervised learning.
Reinforcement Learning
This type of learning may be well thought-out as a midway of the supervised and unsupervised form of learning (here a teacher is present but do not provide a desired output but only say whether the output is correct or incorrect). In this method the learning network does some action on the surroundings and gets a feedback reaction from it. The learning system grades its action good (rewarding) action or bad (punishable) action based on the response and consequently adjusts its parameters. Until an equilibrium state is achieved this parameter adjustment is continued. After equilibrium state is reached there will be no more changes in its parameters. The self-organizing neural learning may be categorized under this type of learning
Learning Algorithms
The learning algorithms means selecting one model from the set of allowed models. There are numerous algorithms available for training neural network models; most of them can be viewed as a straightforward application of optimization theory and statistical estimation.
Hebbian Learning
A learning method for biological neuron was postulated by neuropsychologist Donald Hebb -When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place on one or both cells such that As efficiency as one of the cells firing B, is increased.

That means if the neurons on the either sides of a synapse (connection) are activated at the same time (i.e. synchronously), then the strength of that synapse is selectively increased. Also, if the neurons on the either sides of a synapse are not activated at the same time (activated asynchronously), then that synapse is selectively weakened or eliminated. On the basis of this Hebbian method is given as follows

In Hebbian learning, the input-output pairs (x, y) are associated by the weight matrix W known as correction matrix. This is computed as

Where is the transpose of associated output vector yi . There are number of variants of this method.
Competitive Learning
In this method those neurons which respond strongly to input stimuli have their weights updated. When an input pattern is given, all neurons in the layer compete and the winning neuron undergoes weight adjustment.
Gradient Decent Learning
Gradient decent method of learning is based on the minimization of error E defined in terms of weights and the activation function of the network. Also it requires that activation function used by network is differentiable, as weight update is dependent on the gradient of error E. therefore we must understand what gradient decent minimization is. Differential Calculus is the branch of mathematics concerned with computing gradients. Consider a function y = f(x):

The gradient (rate of change) of f(x) at a particular value of x, as we change x can be approximated by ?y/?x. Or we can write it exactly as

which is known as the partial derivative of f(x) with respect to x. following are some simple examples to make this clearer:

Other derivatives can also be computed in the same way. For example

Suppose we have a function f(x) and we want to change the value of x to minimize f(x). What we need to do depends on the derivative of f(x). There are three cases to consider

In summary, we can decrease f(x) by changing x by the amount:

where ? is a small positive constant specifying how much we change x by, and the derivative ?f/?x tells us which direction to go in. If we repeatedly use this equation, f(x) will (assuming ? is sufficiently small) keep descending towards its minimum. Hence this procedure is known as gradient descent minimization.

Stochastic Learning

In this method, weight is adjusted in a probabilistic fashion.
Gathering Data for Neural Networks
After getting the problem to be solved by ANN we need to gather the training data. The training data set should cover a number of cases. Each of the data in set contains the values for a input and output variables. Firstly we need to decide which variables to use, and how many values for those variable needs to be collected. The choice of variable is done intuitively. Expertise in the problem domain will give some idea of which input variables are likely to be significant.

ANN processes numeric data in a restricted range. This introduces a problem if data is in an unusual range, if there is missing data, or if data is non-numeric. Luckily, there are methods to deal with each of these problems. Treating non-numeric data is much more difficult. The most widespread form of non-numeric data is nominal-value variables such as Gender= {Male, Female}. This type of variable, however, can be represented numerically. ANN is not apt to perform well with nominal variables that have a large number of possible values. Other kinds of non-numeric data must either be converted to numeric form, or discarded.

The number of data pairs needed for training also frequently presents difficulties. There are some heuristic rules, which are able to find the number of pairs needed on the basis of the size of the network. If the number of variables in the network increases, the number of pairs required increases nonlinearly, so that with even a fairly small number of variables a massive number of pairs are necessary. This is known as "the curse of dimensionality,"
Perceptron Learning
There are many neural network architectures such as the perception, multilayer Perceptrons, networks with feedback loops, self-organizing systems, and dynamical networks, together with several different learning methods such as error-correction learning, competitive learning, supervised and unsupervised learning.

Perceptrons was the general name given by the Frank Rosenblatt to a family of theoretical and experimental ANN models proposed in the period 1957 to 1962. The perceptron learning is a typical error correction learning algorithm of single-layer feedforward networks with linear threshold activation function.
Single Layer Perceptron
Single layer perceptron is an arrangement of one input layer feeding forward to one output layer of McCulloch-Pitts neurons.

In this network data is presented at the input layer, inputs are then multiplying by the weight layer. The result of this multiplication is processed using a function that determines whether or not the output node fires.

As we have discussed that the process of finding the correct values for the weights is called the learning rule. The learning process starts with initializing the weight matrix to a set of random numbers between -1 and +1. As network learns, the values for weight change until it has been determined that the network has solved the problem. Weights are adjusted using supervised learning algorithm (training). Training data set consists of input data for which the right output is known. Beginning with random weights, an input sample is presented to the network and the network then makes an initial guess about the correct output. While training the difference between the guessed output and the correct value for the output is computed, and the weights are adjusted in so as to minimize the error. The error minimization technique is based on conventional gradient descent techniques. While this may appear to be very mathematical, the actual functions used in neural networks for making the corrections in the weights are chosen because of their simplicity. And therefore the implementation of the algorithm is always uncomplicated.. in this process neuron is modeled as a simple threshold function.

This is a comparatively simple activation function to implement. It determine an error function E

Where in this case T is the desired or target output vector for a training input. This function has to minimize in order to determine how the weights should change. That means we need to find a point at which the function reaches its minimum value and for this purpose differentiation is used. Differentiation provides the rate at which functions change, and is often defined as the tangent on a curve at a particular point. We then differentiate the error function with respect to the weight matrix.

Generally the perceptron learning algorithm works as follows.
· Initialize the weights of network to random values in the interval [-1,+1].

· Provide an input pattern to the network

· Compute the network output.

· For every node n in the output layer.

· Calculate the error

· add error En to all of the weights that connect to node n

· Repeat the process from 2. for the next pattern in the training set.
This is the spirit of the perceptron algorithm. This technique minimizes the error function, but the time taken to converge to a solution may be unpredictable. That means several iterations are required to obtain a solution. Therefore to manage the convergence rate, (reduce the size of the steps being taken) a parameter called a learning rate is used. This parameter is set to a value that is less than unity, and means that the weights are updated in smaller steps (using a fraction of the error). The weight update rule becomes the following.

This means that the weight value at iteration t+1 of the algorithm is equivalent to a fraction of the error eEn added to the weight value at iteration t.

Example of the Perceptron Learning Algorithm

Suppose we have two Boolean inputs x1, x2 ? {0, 1}, one Boolean output o ? {0, 1}

and the training set is given by the following input/output pairs

Then the learning problem is to find weight w1 and w2 and threshold value ? such that the computed output of our network is equal to the desired output for all examples. This gives an input vector defined as follows, input=[I0,I1] and weight matrix

The output O then becomes

Implementing the perceptron learning algorithm then becomes a matter of substituting the input values in data pair, into the vector I.
Implementing the perceptron learning algorithm then becomes a matter of substituting the input values in data pair, into the vector I.

Multilayer Perceptrons
The main limitation of the perceptron is that it could only solve problems that are linearly separable. To show this we will talk about the problem of modeling simple logic gates using this architecture. Consider modeling a simple AND gate.

The above figure demonstrates the relationship between input and output required to model a simple AND gate. The figure shows the spatial disposition of the input data. It can be seen that it is possible to draw a straight line between the co-ordinates of the input values that require an output of 1, and an output of 0. This problem is thus linearly separable. The simple Perceptron, based on units with a threshold activation function, could only solve problems that were linearly separable.

There are many challenging problems in AI which are not linearly separable however, and thus the Perceptron was discovered to have a crucial weakness, and returning to the problem of modeling logic gates, the exclusive-or problem (XOR) is in fact not linearly separable.

The above figure shows the arrangement of the patterns that a curve is required to separate the patterns. A possible solution would be to use a bilinear solution, as shown in following figure

To get a bilinear solution we could add another layer of weights to the simple perceptron model, but that brings the problem of assessing what happens in the middle layer. For a simple task such as the XOR problem, we could fairly easily work out what expected outputs for the middle layer of units should be, but finding a solution that would be completely automated would be incredibly difficult.

A superior solution to the problem of learning weights is to use standard optimization techniques. In this case we identify an error function which is expressed in terms of the neural network output. The goal of the network then becomes to find the values for the weights such that the error function is at its minimum value. Thus gradient descent techniques can then be used to determine the impact of the weights on the value of the error function. We need to have an error function that is differentiable, which means it should be continuous. The threshold function is not continuous, and so is unsuitable. A function that works in a similar way to the threshold function, but that is differentiable is the Logistic Sigmoid Function, given by the following equation.

The basic MLP learning algorithm is outlined below. This is what you should attempt to implement.
· Initialize the network, with all weights set to random numbers between -1 and +1.

· Present the first training pattern, and obtain the output.

· Compare the network output with the target output.

· Propagate the error backwards.

· Correct the output layer of weights using the following formula
where who is the weight connecting hidden unit h with output unit o, is the learning rate, oh is the output at hidden unit h. is given by the following

where oo is the output at node o of the output layer, and to is the target output for that node.
· Correct the input weights using the following formula.
where wih is the weight connecting node i of the input layer with node h of the hidden layer, oi is the input at node i of the input layer, is the learning rate. is calculated as follows.
· Calculate the error, by taking the average difference between the target and the output vector. For example the following function could be used.
where p is the number of units in the output layer.
· Repeat from 2 for each pattern in the training set to complete one epoch.

· Shuffle the training set randomly. This is important so as to prevent the network being influenced by the order of the data.

· repeat from step 2 for a set number of epochs, or until the error ceases to change
The delta learning rule
Another training rule is the delta rule. The perceptron training rule is based on the idea that weight modification is best determined by some fraction of the difference between target and output. The delta rule is based on the idea of gradient descent. This is a difficult mathematical concept. From some given point, a Southward path may be steeper than an Eastward path. Walking East may take you off a cliff, while walking South may only take you along its gently sloping edge. West would take you up a steep hill, and North leads to level ground. All you want is a leisurely walk, so you seek ground where the overall steepness of your options is minimized. Similarly, in weight modification, a neural net can seek a weight distribution that minimizes error.

Limiting ourselves to nets with no hidden nodes, but possibly having more than one output node, let p be an element in a training set, and t(p,n) be the corresponding target of output node n. However, let y(p,n) be determined by the squashing function, s, mentioned above, where a(p,n) is n's activation relative to p, y(p,n) = s(a(p,n)) or the squashed activation of node n relative to p. Setting the weights (each Wi) for a net also sets the difference between t(p,n) and y(p,n) for every p and n, and this means setting the net's overall error for every p. Therefore, for any set of weights, there is an average error. However, the delta rule rests on refinements in the notions of average and error.

The error correction learning procedure is simple enough in conception. The procedure is as follows: During training an input is put into the network and flows through the network generating a set of values on the output units. Then, the actual output is compared with the desired target, and a match is computed. If the output and target match, no change is made to the net. However, if the output differs from the target a change must be made to some of the connections.

