Integrating data
Get The Data that BI needs by using the ETL process
It was challenging to ETL presented by SOA for integrating data from different locations.

Integrating data from multiple resources is not a new problem for either BI or ETL. ETL is mature and has a proven record as a basis for building successful BI solutions. However, using ETL basically negates most of the benefits that made pursue SOA in the first place. The main problem in the pre-SOA era is what is known as integration spaghetti. Consider the situation in Figure 2. As people use the systems, they find that they need information from other systems, and point-to-point integration emerges. Figure 2 shows four types of point-to-point integrations: ETL (extract, transform Load), which is a DB-to-DB relationship; online and file-based, both of which are application-to-application relationships; and direct connection to a DB, which is an application-to-database relationship. Note that this is not an exhaustive list; there are additional relation types, such as replication, message-based, and others that are not expressed in Figure 2. The end result is a spaghetti of systems. Making changes in one system has ripple effects, with results that are unpredictable. The SOA emphasis on general interfaces and autonomy aims to solve these problems.

Adding ETL as a direct pipeline into the services' data just adds a new point-to-point interface�cracking the SOA "interface armor" and introducing a dependency between the BI and the service. A variation on doing ETL can be to replicate the SOA data into an external database, and then do ETL on that data. However, it is exactly the same as using ETL on the service's database, as we are still bypassing the contract and we are still coupled to the structure of the internal data.
Pulling SOA Data (Request/Reply)
The simplest solution for integrating SOA and BI is not to do anything specific for the BI processes. Instead, what if we use the existing contracts�those that were drafted as part of the SOA initiative? To be able to fulfill our BI needs, we would need to poll the services' interfaces on a regular basis, so that we can get trend and historic data.

There are basically two problems with this approach. One is the problem of network bandwidth. Polling each of the services that we need transfers a lot of data on the wire. To solve this problem, we might want to increase the interval in which we poll the services. However, in doing so, we hit the second problem: We run the risk of missing important events that occur during the interval. Another option for using SOA contacts is to build a specific contract that would serve the BI needs; that is, the contract will enable retrieving data from the internal structures of the service and so that the BI can use it. However, that is pretty much the same as using standard ETL.
Making an SOA Mind Shift: Moving to a Push Model
The third option is based on taking SOA forward, beyond the simple request/reply that we are used to thinking about, and combining SOA with another architectural style that is called event-driven architecture (EDA). In a nutshell EDA, like SOA, is an architectural style that is built on the push model. EDA components publish events. In the logical sense, an event is any significant change in the component that publishes the event. The change can be a result of proper conduct, such as an order than has been processed; it can be a fault, such as a database that is down; a threshold that was crossed, such as the millionth customer making a purchase; or anything else that seems important. In the physical sense, events are messages with a header describing the metadata of the event and the body containing the content. After processing the event, these components can also produce new events, and so on. For example, in an airline scenario, an event can be a notice that a flight is delayed. This event can trigger another component that is responsible for connecting flights, to try to find alternate flights for the passengers arriving on the delayed flight. A unique characteristic of EDA versus other push technologies is its notions of event stream processing (ESP) and complex event processing (CEP). Instead of treating the events as isolated occurrences, we look at them as a chain of related events. Looking at an event chain�and, even more so, at a combination of several event chains (event cloud)�allows retrospective analysis over time, as well as other advanced analysis of event patterns. EDA can be used independently of SOA; but fusing them together can be very beneficial.
SOA Meets EDA
By "publication messages," mean that the service will publish its state either in a periodic manner or per event to anyone who might be listening. While it might look like we get a similar network load that polling the services would, the network load is much less. However, using inversion of communications, each interested service consumer would get an event only once, at most, while polling a consumer would get the same state change multiple times (or miss out on data).To make the solution complete, we can add additional request/reply or request/reaction messages to allow service consumers to retrieve initial snapshots. Following this approach, you get an event stream of the changes within the service in a manner that is not specific for the BI. In fact, having other services react on the event stream can increase the overall loose coupling in the system; for instance, it can allow caching the state of other services and ease the temporal coupling between services. Additionally, adding EDA to SOA can serve as the basis for solving the reporting problem of SOA, by implementing the aggregated-reporting pattern (early draft).

EDA on SOA solves the BI problem; as soon as you have event streams on the network, the BI components can grab that data, scrub it as much as they like, and push it to their data marts and data warehouses. For example, Listing 2 shows a query on such an order stream to find orders that are larger than $100,000. Note that while the query looks suspiciously like SQL (from which it was derived), it is also quite different; the query continuously runs on a non-persistent stream of events.

The road to mainstream CEP tools is still long, but there are several vendors working on solutions. Even if we do not use CEP, we can still gain a lot of benefit from receiving these events. For example, a service that manages the stocks in the warehouse can listen in on the Order service's orders-processed stream and then take care of ordering new stocks, securing available items, and so on. When we build our BI with EDA on SOA, we essentially create the BI as a mash-up of services. We can take that even further and have the BI component itself expose its trend data and other analysis results as a service. We can then consume that data and use it in other applications. For instance, if the CEP query in Listing 2 will generate an event every time that an order exceeds $100,000, we can present a nice dashboard on the CEO's portal that will show in real time how many large orders the organization processes per hour/per day, and so on, along with a few other meaningful gauges.
Conclusion
Using EDA and SOA together gives us a solution that does not break SOA and solves BI requirements. However, there are two challenges to the EDA and SOA approach. One is that there is not a lot of experience using EDA and SOA as a BI solution (compared to ETL, which is proven). The other is that it needs more work or even rework, as the first wave of SOA implementations builds on the more basic synchronous-messaging approach. Adding EDA to an existing SOA solution is not a small effort. However, neither is using ETL within SOA, because we need to go out and extract data from many sources, as each service holds its own internal data and we are likely to have quite a few of them for any reasonably sized SOA initiative. Overall, EDA and SOA wins over using ETL from almost all of the perspectives. From the SOA perspective, adding EDA to SOA is good for the overall SOA initiative. EDA is a valuable tool for building services that are more autonomous. For example, services can now cache relevant data from other services and get notifications when that data changes. Thus, the consuming service can be decoupled in time from the services with which it interacts and not depend on their availability�which is the situation when synchronous request/reply is used. From the BI perspective, things are even better. Utilizing EDA can give us something that was really hard to achieve by using traditional BI mechanisms�which is real-time insights. Using the EDA-generated event stream, we can now get data in real time and, using CEP tools, we can process it to act in real time and handle the emerging trends as they appear. To summarize, implementing a BI solution by using EDA and SOA is superior to using traditional ETL. Not only do we get our basic BI, but we actually get better, real-time BI�not to mention improvement in the overall quality of our SOA.

