In computer term vulnerability
In computer term vulnerability is weakness which allow attacker to reduce the information assurance of system. Vulnerability is the intersection of three elements: a system susceptibility or flaw, attacker access to the flaw, and attacker capability to exploit the flaw. To be vulnerable, an attacker must have at least one applicable tool or technique that can connect to a system weakness. In this frame, vulnerability is also known as the attack surface.

A security risk may be classified as a vulnerability. A vulnerability with one or more known instances of working and fully-implemented attacks is classified as an exploit. The window of vulnerability is the time from when the security hole was introduced or manifested in deployed software, to when access was removed, a security fix was available/deployed, or the attacker was disabled. Constructs in programming languages that are difficult to use properly can be a large source of vulnerabilities. There are many causes why vulnerabilities exist.
· Complexity: Large, complex systems increase the probability of flaws and unintended access points

· Familiarity: Using common, well-known code, software, operating systems, and/or hardware increases the probability an attacker has or can find the knowledge and tools to exploit the flaw.

· Connectivity: More physical connections, privileges, ports, protocols, and services and time each of those are accessible increase vulnerability.

· Password management flaws: The computer user uses weak passwords that could be discovered by brute force. The computer user stores the password on the computer where a program can access it. Users re-use passwords between many programs and websites.

· Fundamental operating system design flaws: The operating system designer chooses to enforce sub optimal policies on user/program management. For example operating systems with policies such as default permit grant every program and every user full access to the entire computer. This operating system flaw allows viruses and malware to execute commands on behalf of the administrator.

· Fundamental operating system design flaws: The operating system designer chooses to enforce sub optimal policies on user/program management. For example operating systems with policies such as default permit grant every program and every user full access to the entire computer. This operating system flaw allows viruses and malware to execute commands on behalf of the administrator.

· Software bugs: The programmer leaves an exploitable bug in a software program. The software bug may allow an attacker to misuse an application.

· Unchecked user input: The program assumes that all user input is safe. Programs that do not check user input can allow unintended direct execution of commands or SQL statements (known as Buffer overflows, SQL injection or other non-validated inputs.
The vulnerabilities we divide into mainly two types as follows
Software vulnerabilities
· Buffer overflow

· Input validation errors

· Privileges confusion

· Users (social engineering)

· Race conditions

· Privileges escalation

· User interface failures
Network vulnerabilities
· Internal network vulnerabilities

· External network vulnerabilities

· Hardware vulnerabilities
Measurement (To be found out, still unknown, more research/work to be done)
· Confidentiality, Integrity, Availability?

· Financial, Time, Political impact?

· Risk/Vulnerabilities assessment?
Buffer Overflow:
A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold or when a program attempts to put data in a memory area past a buffer. In this case, a buffer is a sequential section of memory allocated to contain anything from a character string to an array of integers. Writing outside the bounds of a block of allocated memory can corrupt data, crash the program, or cause the execution of malicious code.

Buffer overflow is mainly known as software vulnerability. In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized stack buffer. The result is that information on the call stack is overwritten, including the function's return pointer. The data sets the value of the return pointer so that when the function returns, it transfers control to malicious code contained in the attacker's data.

Buffer overflow vulnerabilities typically occur in code that:
· Relies on external data to control its behavior

· Depends upon properties of the data that are enforced outside of the immediate scope of the code

· Is so complex that a programmer cannot accurately predict its behavior
How to Determine If You Are Vulnerable
For server products and libraries, keep up with the latest bug reports for the products you are using. For custom application software, all code that accepts input from users via the HTTP request must be reviewed to ensure that it can properly handle arbitrarily large input.
Buffer Overflow and Web Applications:
Attackers use buffer overflow to corrupt the execution stack of web applications. By sending carefully crafted input to web application, an attacker can cause the web application to execute arbitrary code and affectingly taking over the machine. Buffer overflow flaws can be present in both web server or application server products. Almost all known web servers, application servers, and web application environments are susceptible to buffer overflows, the notable exception being environments written in interpreted languages like Java or Python, which are immune to these attacks (except for overflows in the Interpreter itself). There are many consequences if buffer overflow occurs such as:
· Availability: Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.

· Access control : Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of a programs implicit security policy

· Other: When the consequence is arbitrary code execution, this can often be used to subvert any other security service.
How to protectyourself against buffer overflow
Keep up with the latest bug reports for your web and application server products and other products in your Internet infrastructure. Apply the latest patches to these products. Periodically scan your web site with one or more of the commonly available scanners that look for buffer overflow flaws in your server products and your custom web applications. For your custom application code, you need to review all code that accepts input from users via the HTTP request and ensure that it provides appropriate size checking on all such inputs. This should be done even for environments that are not susceptible to such attacks as overly large inputs that are uncaught may still cause denial of service or other operational problems.
Input Validation error:
These type of errors occurred when hacker put some unclean and unmeaning data to operate on program. These types of errors occur mainly in automated facilities. There are many rules you can implement to counter attack input validation errors such as data dictionary or by inclusion of validation program logic. These type of methods can protect from you input validation errors e.g. like telephone number only you can enter digits not +, - etc. There are some validation methods to mitigate input validation errors:
· Format or picture check
Checks that the data is in a specified format (template), e.g., dates have to be in the format DD/MM/YYYY.
· Data type checks
Checks the data type of the input and give an error message if the input data does not match with the chosen data type, e.g., In an input box accepting numeric data, if the letter 'O' was typed instead of the number zero, an error message would appear.
· Range check
Checks that the data lie within a specified range of values, e.g., the month of a person's date of birth should lie between 1 and 12
· Limit check
Unlike range checks, data is checked for one limit only, upper OR lower, e.g., data should not be greater than 2 (>2).
· Presence check
Checks that important data are actually present and have not been missed out, e.g., customers may be required to have their telephone numbers listed.
· Check digits
Used for numerical data. An extra digit is added to a number which is calculated from the digits. The computer checks this calculation when data are entered.
· Hash totals
This is just a batch total done on one or more numeric fields which appears in every record, e.g., add the Telephone Numbers together for a number of Customers
· Consistency Checks
Checks fields to ensure data in these fields corresponds, e.g., If Title = "Mr.", then Gender = "M".
· Cross-system Consistency Checks
Compares data in different systems to ensure it is consistent, e.g., The address for the customer with the same id is the same in both systems. The data may be represented differently in different systems and may need to be transformed to a common format to be compared, e.g., one system may store customer name in a single Name field as 'Doe, John Q', while another in three different fields: First_Name (John), Last_Name (Doe) and Middle_Name (Quality); to compare the two, the validation engine would have to transform data from the second system to match the data from the first, for example, using SQL: Last_Name || ', ' || First_Name || substr(Middle_Name, 1, 1) would convert the data from the second system to look like the data from the first 'Doe, John Q'
· File existence check
Checks that a file with a specified name exists. This check is essential for programs that use file handling
· Logic check
Checks that an input does not yield a logical error, e.g., an input value should not be 0 when there will be a number that divides it somewhere in a program.
Privilegeconfusion:
When a computer program is innocently fooled by some other party into misusing its authority. There are few types of privilege confusion can occur like:
Cross site request forgery
In this case a client's web browser has no means to distinguish the authority of the client from any authority of a "cross" site that the client is accessing.
Click jacking
It is another category of web attacks that can be analyzed as privilege confusion attacks.
FTP bounce attack
An FTP bounce attack can allow an attacker to indirectly connect to TCP ports that the attacker's machine has no access to, using a remote FTP server as the confused deputy.

The simplest way to solve the confused privilege problem is to bundle together the designation of an object and the permission to access that object. This is exactly what a capability is. Using capability security in the compiler example, the client would pass to the server a capability to the output file, not the name of the file. Since it lacks a capability to the billing file, it cannot designate that file for output. In the cross-site request forgery example, a URL supplied "cross"-site would include its own authority independent of that of the client of the web browser (for example, by using a YURL).
Race conditions:

Race condition or race hazard is a flaw in an electronic system or process whereby the output and/or result of the process are unexpectedly and critically dependent on the sequence or timing of other events. The term originates with the idea of two signals racing each other to influence the output first. Race conditions can occur in electronics systems, especially logic circuits, and in computer software, especially multithreaded or distributed programs.

Critical and non-critical race conditions
A critical race occurs when the order in which internal variables are changed determines the eventual state that the state machine will end up in.

A non-critical race occurs when the order in which internal variables are changed does not alter the eventual state. In other words, a non-critical race occurring when moving to a desired state means that more than one internal state variable must be changed at once, but no matter in what order these internal state variables change, the resultant state will be the same anyway.
Static, dynamic, and essential race conditions

Static race conditions
These are caused when a signal and its complement are combined together.
Dynamic race conditions
These result in multiple transitions when only one is intended. They are due to interaction between gates (Dynamic race conditions can be eliminated by using not more than two levels of gating).
Essential race conditions
These are caused when an input has two transitions in less than the total feedback propagation time. Sometimes they are cured using inductive delay-line elements to effectively increase the time duration of an input signal
Privilege escalations:
Privilege escalation is the act of exploiting a bug or design flaw in a software application to gain access to resources which normally would have been protected from an application or user. The result is that the application performs actions with more privileges than intended by the application developer or system administrator. Privilege escalation can occur in three forms:
· Vertical privilege escalation:-where a lower privilege user accesses functions or content reserved for higher privilege users (e.g. Internet Banking User A accesses Administrator functions)

· Vertical privilege escalation:- where a lower privilege user accesses functions or content reserved for higher privilege users (e.g. Internet Banking User A accesses Administrator functions)

· Privilege descalation:- where a high privileged but segregated user (e.g. user/security administrator, commonly seen in a SOx environment) is able to downgrade their access level to access normal user function.
There is few mitigation strategies can be used to over come privilege escalation as listed below:
· Running applications with least privilege (for example by running Internet Explorer with the Administrator SID disabled in the process token) in order to reduce the ability of buffer overrun exploits to abuse the privileges of an elevated user.

· Requiring kernel mode code to be digitally signed

· Use of up-to-date antivirus software

· Use of compilers that trap buffer overruns

· Encryption of software and/or firmware components.
User interface failures
There can be some user interface failures such as:
· Warning fatigue or user conditioning

· Blaming the victim, prompting user to make security decisions without giving user enough information to answer it.

· Race conditions
Network vulnerabilities
Network vulnerabilities are present in every system. Network technology advances so rapidly that it can be very difficult to eradicate vulnerabilities altogether; the best one can hope for, in many cases, is simply to minimize them. Networks are vulnerable to slowdown to both external and internal factors.
Internal Vulnerabilities
Internal network vulnerabilities result from overextension of bandwidth (user needs exceeding total resources) and bottlenecks (user needs exceeding resources in specific network sectors). These problems can be addressed by network management systems and utilities such as trace route, which allow administrators to pinpoint the location of network slowdowns. Traffic can then be rerouted within the network architecture to increase speed and functionality.
External Vulnerabilities
Internal network vulnerabilities result from overextension of bandwidth (user needs exceeding total resources) and bottlenecks (user needs exceeding resources in specific network sectors). These problems can be addressed by network management systems and utilities such as trace route, which allow administrators to pinpoint the location of network slowdowns. Traffic can then be rerouted within the network architecture to increase speed and functionality.

Data interception is another of the most common network vulnerabilities, for both LANs and WLANs. Hackers within range of a WLAN workstation can infiltrate a secure session, and monitor or change the network data for the purpose of accessing sensitive information or altering the operation of the network. User authentication systems are used to keep such interception from occurring. Firewalls can keep unauthorized users from accessing the network in the first place, while base station discovery scans allow for the rooting out of intruders on a given network.

Services such as email and the Web (SMTP and HTTP) assume that the lower levels are secure. The most thats commonly done is a look-up of the hostname against an IP address using DNS. So someone who can forge IP addresses can abuse the facilities. The most common example is mail forgery by spammers; there are many others. For example, if an attacker can give DNS incorrect information about the whereabouts of your companys Web page, the page can be redirected to another siteregardless of anything you do, or dont do, at your end. As this often involves feeding false information to locally cached DNS tables, its called DNS cache poisoning.
Defence against Network Attack
It might seem reasonable to hope that most attacksat least those launched by script

Kiddiescan be thwarted by a system administrator who diligently monitors the security bulletins and applies all the vendors patches promptly to his software. This is part of the broader topic of configuration management.
Configuration Management
Tight configuration management is the most critical aspect of a secure network. If you

can be sure that all the machines in your organization are running up-to-date copies of

the operating system, that all patches are applied as theyre shipped, that the service

and configuration files dont have any serious holes (such as world-writeable password files), that known default passwords are removed from products as theyre installed, and that all this is backed up by suitable organizational discipline, then you can deal with nine and a half of the top ten attacks. (You will still have to take care with application code vulnerabilities such as CGI scripts, but by not running them with administrator privileges you can greatly limit the harm that they might do.)

Configuration management is at least as important as having a reasonable firewall;

in fact, given the choice of one of the two, you should forget the firewall. However,

its the harder option for many companies, because it takes real effort as opposed to

buying and installing an off-the-shelf product. Doing configuration management by

numbers can even make things worse.

Several tools are available to help the systems administrator keep things tight. Some

enable you to do centralized version control, so that patches can be applied overnight,

and everything can be kept in synch; others, such as Satan, will try to break into the

machines on your network by using a set of common vulnerabilities [320]. Some familiarity with these penetration tools is a very good idea, as they can also be used by the opposition to try to hack you. The details of the products that are available and what they do change from one year to the next, so it is not appropriate to go into details here. What is appropriate is to say that adhering to a philosophy of having system administrators stop all vulnerabilities at the source requires skill and care; even diligent organizations may find that it is just too expensive to fix all the security holes that were tolerable on a local network but not with an Internet connection. Another problem is that, often, an organisations most
Network Attack and Defence
375 critical applications run on the least secure machines, as administrators have not dared to apply operating system upgrades and patches for fear of losing service.

This leads us to the use of firewalls.
Firewalls
The most widely sold solution to the problems of Internet security is the firewall. This

is a machine that stands between a local network and the Internet, and filters out traffic that might be harmful. The idea of a “solution in a box” has great appeal to many organizations, and is now so widely accepted that its seen as an essential part of corporate due diligence. (Many purchasers prefer expensive firewalls to good ones.) Firewalls come in basically three flavours, depending on whether they filter at the IP packet level, at the TCP session level, or at the application level.
Packet Filtering
The simplest kind of firewall merely filters packet addresses and port numbers. This

functionality is also available in routers and in Linux. It can block the kind of IP

spoofing attack discussed earlier by ensuring that no packet that appears to come from

a host on the local network is allowed to enter from outside. It can also stop denial-of service attacks in which malformed packets are sent to a host, or the host is persuaded to connect to itself (both of which can be a problem for people still running Windows 95). Basic packet filtering is available as standard in Linux, but, as far as incoming attacks are concerned, it can be defeated by a number of tricks. For example, a packet can be fragmented in such a way that the initial fragment (which passes the firewalls inspection) is overwritten by a subsequent fragment, thereby replacing an address with one that violates the firewalls security policy.
Circuit Gateways
More complex firewalls, called circuit gateways, reassemble and examine all the packets in each TCP circuit. This is more expensive than simple packet filtering, and can also provide added functionality, such as providing a virtual private network over the Internet by doing encryption from firewall to firewall, and screening out black-listed Web sites or newsgroups (there have been reports of Asian governments building national firewalls for this purpose).

However, circuit-level protection cant prevent attacks at the application level, such

as malicious code.
Application Relays
The third type of firewall is the application relay, which acts as a proxy for one or

more services, such as mail, telnet, and Web. Its at this level that you can enforce

rules such as stripping out macros from incoming Word documents, and removing active content from Web pages. These can provide very comprehensive protection

against a wide range of threats.

The downside is that application relays can turn out to be serious bottlenecks. They

can also get in the way of users who want to run the latest applications.
Ingress versus Egress Filtering
At present, almost all firewalls point outwards and try to keep bad things out, though

there are a few military systems that monitor outgoing traffic to ensure that nothing

classified goes out in the clear. That said, some commercial organizations are starting to monitor outgoing traffic, too. If companies whose machines get used in service denial attacks start getting sued, egress packet filtering might at least in principle be used to detect and stop such attacks. Also, as there is a growing trend toward snitch ware, technology that collects and forwards information about an online subscriber without their authorization. Software that “phones home,” ostensibly for copyright enforcement and marketing purposes, can disclose highly sensitive material such as local hard disk directories. I expect that prudent organizations will increasingly want to monitor and control this kind of traffic, too.
Combinations
At really paranoid sites, multiple firewalls may be used. There may be a choke, or

packet filter, connecting the outside world to a screened subnet, also known as a demilitarized zone (DMZ), which contains a number of application servers or proxies tofilter mail and other services. The DMZ may then be connected to the internal networkvia a further filter that does network address translation. Within the organization, there may be further boundary control devices, including pumps to separate departments, or networks operating at different clearance levels to ensure that classified information doesnt escape either outward or downward (Figure 18.2).

Such elaborate installations can impose significant operational costs, as many routine

messages need to be inspected and passed by hand. This can get in the way so

much that people install unauthorized back doors, such as dial-up standalone machines, to get their work done. And if your main controls are aimed at preventing information leaking outward, there may be little to stop a virus getting in..
Anti Virus
Antivirus software is used to prevent, detect, and remove malware, including computer viruses, worms, and trojan horses. Such programs may also prevent and remove adware, spyware, and other forms of malware.

A variety of strategies are typically employed. Signature-based detection involves searching for known malicious patterns in executable code. However, it is possible for a user to be infected with new malware in which no signature exists yet. To counter such so called zero-day threats, heuristics can be used. One type of heuristic approach, generic signatures, can identify new viruses or variants of existing viruses for looking for known malicious code (or slight variations of such code) in files. Some antivirus software can also predict what a file will do if opened/run by emulating it in a sandbox and analyzing what it does to see if it performs any malicious actions. If it does, this could mean the file is malicious.

However, no matter how useful antivirus software is, it can sometimes have drawbacks. Antivirus software can degrade computer performance if it is not designed efficiently. Inexperienced users may have trouble understanding the prompts and decisions that antivirus software presents them with. An incorrect decision may lead to a security breach. If the antivirus software employs heuristic detection (of any kind), the success of it is going to depend on whether it achieves the right balance between false positives and false negatives. False positives can be as destructive as false negatives. In one case, a faulty virus signature issued by Symantec mistakenly removed essential operating system files, leaving thousands of PCs unable to boot. Finally, antivirus software generally runs at the highly trusted kernel level of the operating system, creating a potential avenue of attack.

There are several methods which antivirus software can use to identify malware.
Signature based detection is the most common method. To identify viruses and other malware, antivirus software compares the contents of a file to a dictionary of virus signatures. Because viruses can embed themselves in existing files, the entire file is searched, not just as a whole, but also in pieces.

Malicious activity detection is another approach used to identify malware. In this approach, antivirus software monitors the system for suspicious program behavior. If suspicious behavior is detected, the suspect program may be further investigated, using signature based detection or another method listed in this section. This type of detection can be used to identify unknown viruses or variants on existing viruses.

Heuristic-based detection, like malicious activity detection, can be used to identify unknown viruses. This can be accomplished in one of two ways: file analysis and file emulation.

File analysis is the process of searching a suspect file for virus-like instructions. For example, if a program has instructions to reformat the C drive, the antivirus software might further investigate the file. One downside of this feature is the large amount of computer resources needed to analyse every file, resulting in slow operation.

File emulation is another heuristic approach. File emulation involves executing a program in a virtual environment and logging what actions the program performs. Depending on the actions logged, the antivirus software can determine if the program is malicious or not and then carry out the appropriate disinfection actions.
But there are some issues of concern with the Antivirus software such as:
Performance
Some antivirus software can considerably reduce performance. Users may disable the antivirus protection to overcome the performance loss, thus increasing the risk of infection. For maximum protection, the antivirus software needs to be enabled all the time often at the cost of slower performance .
Security
Antivirus programs can in themselves pose a security risk as they often run at the 'System' level of privileges and may hook the kernel Both of these are necessary for the software to effectively do its job, however exploitation of the antivirus program itself could lead to privilege escalation and create a severe security threat. Arguably, use of antivirus software when compared to the principle of least privilege is largely ineffective when ramifications of the added software are taken into account.
Unexpected renewal costs
Some commercial antivirus software end-user license agreements include a clause that the subscription will be automatically renewed, and the purchaser's credit card automatically billed, at the renewal time without explicit approval. For example, McAfee requires users to unsubscribe at least 60 days before the expiration of the present subscription while BitDefender sends notifications to unsubscribe 30 days before the renewal. Norton Antivirus also renews subscriptions automatically by default.

Open source and free software applications, such as Clam AV, provide both the scanner application and updates free of charge and so there is no subscription to renew.
Privacy
Some antivirus programs may be configured to automatically upload infected or suspicious files to the developer for further analysis. Care should be taking when deploying antivirus software to ensure that documents containing confidential or proprietary information are not sent to the product's developer without prompting the user.
Rogue security applications
Some antivirus programs are actually malware masquerading as antivirus software, such as WinFixer and MS Antivirus.
False positives
If an antivirus program is configured to immediately delete or quarantine infected files (or does this by default), false positives in essential files can render the operating system or some applications unusable.

Heuristic analysis can also detect safe programs as malware if the programs in question use certain functions such as accessing the screen directly; mainly keygens and some modern games suffer from this, as they use keyboard hooks the antivirus program automatically associates with keyloggers (keygens are also often scanned for their serial number generation algorithms as a form of copyright-enforcement).
System related issues
Running multiple antivirus programs concurrently can degrade performance and create conflicts. It is sometimes necessary to temporarily disable virus protection when installing major updates such as Windows Service Packs or updating graphics card drivers.Active antivirus protection may partially or completely prevent the installation of a major update.
Mobile devices
Viruses from the desktop and laptop world have either migrated to, or are assisted in their dispersal by mobile devices. Antivirus vendors are beginning to offer solutions for mobile handsets. These devices present significant challenges for antivirus software, such as microprocessor constraints, memory constraints and new signature updates to these mobile handsets.
Effectiveness
Studies in December 2007 have shown that the effectiveness of Antivirus software is much reduced from what it was a few years ago, particularly against unknown or zero day attacks. The German computer magazine c't found that detection rates for these threats had dropped from 40-50% in 2006 to 20-30% in 2007. At that time, the only exception was the NOD32 antivirus, which managed a detection rate of 68 percent.

The problem is magnified by the changing intent of virus authors. Some years ago it was obvious when a virus infection was present. The viruses of the day, written by amateurs, exhibited destructive behavior or pop-ups. Modern viruses are often written by professionals, financed by criminal organizations It is not in their interests to make their viruses or crime ware evident, because their purpose is to create botnets or steal information for as long as possible without the user realizing. If an infected user has a less-than-effective antivirus product that says the computer is clean, then the virus may go undetected. Nowadays, viruses generally do not attempt to overwhelm the Internet by flooding. Instead, viruses take a more controlled approach, as damaging the vector of infection does not result in financial gain.

Traditional antivirus software solutions run virus scanners on schedule, on demand and some run scans in real time. If a virus or malware is located the suspect file is usually placed into a quarantine to terminate its chances of disrupting the system. Traditional antivirus solutions scan and compare against a publicised and regularly updated dictionary of malware otherwise known as a blacklist. Some antivirus solutions have additional options that employ an heuristic engine which further examines the file to see if it is behaving in a similar manner to previous examples of malware. A new technology utilized by a few antivirus solutions is whitelisting, this technology first checks if the file is trusted and only questioning those that are not. With the addition of wisdom of crowds, antivirus solutions backup other antivirus techniques by harnessing the intelligence and advice of a community of trusted users to protect each other. By providing these multiple layers of malware protection and combining them with other security software it is possible to have more effective protection from the latest zero day attack and the latest crimeware than previously was the case with just one layer of protection.
Cloud antivirus
In current antivirus software a new document or program is scanned with only one virus detector at a time. CloudAV would be able to send programs or documents to a network cloud where it will use multiple antivirus and behavioural detection simultaneously. It is more thorough and also has the ability to check the new document or programs access history.

CloudAV is a cloud computing antivirus developed at a product of scientists of the University of Michigan. Each time a computer or device receives a new document or program, that item is automatically detected and sent to the antivirus cloud for analysis. The CloudAV system uses 12 different detectors that act together to tell the PC whether the item is safe to open.
Firewall
A firewall is a part of a computer system or network that is designed to block unauthorized access while permitting authorized communications. It is a device or set of devices configured to permit, deny, encrypt, decrypt, or proxy all (in and out) computer traffic between different security domains based upon a set of rules and other criteria.

Firewalls can be implemented in either hardware or software, or a combination of both. Firewalls are frequently used to prevent unauthorized Internet users from accessing private networks connected to the Internet, especially intranets. All messages entering or leaving the intranet pass through the firewall, which examines each message and blocks those that do not meet the specified security criteria.

Many users complain of certain firewalls conflicting with legitimate programs or generally not working. The Internet slang term for these is "cottonwall".

There are several types of firewall techniques:
1. Packet filter: Packet filtering inspects each packet passing through the network and accepts or rejects it based on user-defined rules. Although difficult to configure, it is fairly effective and mostly transparent to its users. In addition, it is susceptible to IP spoofing.

2. Application gateway: Applies security mechanisms to specific applications, such as FTP and Telnet servers. This is very effective, but can impose a performance degradation.

3. Circuit-level gateway: Applies security mechanisms when a TCP or UDP connection is established. Once the connection has been made, packets can flow between the hosts without further checking.

4. Proxy server: Intercepts all messages entering and leaving the network. The proxy server effectively hides the true network addresses.
Strengths and Limitations of Firewalls
Since firewalls do only a small number of things, its possible to make them very simple,and to remove many of the complex components from the underlying operating system (such as the RPC and sendmail facilities in Unix). This eliminates a lot of vulnerabilities and sources of error. Organizations are also attracted by the idea of having only a small number of boxes to manage, rather than having to do proper system administration for a large, heterogeneous population of machines.

Conversely, the appeal of simplicity can be seductive and treacherous. A firewall

can only be as good as its configuration, and many organizations dont learn enough to do this properly. They hope that by getting the thing out of the box and plugged it in, the problem will be solved. It wont be. It may not require as much effort to manage a firewall as to configure every machine on your network properly in the first place, but it still needs some. There is a case study of how a firewall was deployed at

Hanscom Air Force Base. The work involved the following: surveying the user community to find which network services were needed; devising a network security policy; using network monitors to discover unexpected services that were in use; and lab testing prior to installation. Once it was up and running, the problems included ongoing maintenance (due to personnel turnover), the presence of (unmonitored) communications to other military bases, and the presence of modem pools. Few non-military organizations are likely to take this much care.

A secondary concern, at least during the late 1990s, was that many of the products

crowding into the market simply werent much good. The business had grown so

quickly, and so many vendors had climbed in, that the available expertise was spread

too thinly. The big trade-off remains security versus performance. Do you install a simple filtering router, which wont need much maintenance, or do you go for a full-fledged set of application relays on a DMZ, which not only will need constant reconfigurationas your users demand lots of new services that must pass through itbut will also act as a bottleneck?

An example in Britain was the NHS Network, a private intranet intended for all

health service users (family doctors, hospitals, and clinicsa total of 11,000 organizations employing about a million staff in total). Initially, this had a single firewall to the outside world. The designers thought this would be enough, as they expected most traffic to be local (as most of the previous data flows in the health service had been). What they didnt anticipate was that, as the Internet took off in the mid-1990s, 40% of traffic at every level became international. Doctors and nurses found it very convenient to consult medical reference sites, most of which were in America. Trying to squeeze all this traffic through a single orifice was unrealistic. Also, since almost all attacks on healthcare systems come from people whore already inside the system, it was unclear what this central firewall was ever likely to achieve.

Another issue with firewalls (and boundary control devices in general) is that they

get in the way of what people want to do, and so ways are found round them. As most

firewalls will pass traffic that appears to be Web pages and requests (typically because its for port 80), more and more applications use port 80, as its the way to get things to work through the firewall. Where this isnt possible, the solution is for whole services to be reimplemented as Web services (webmail being a good example). These pressures continually erode the effectiveness of firewalls, and bring to mind John Gilmores famous saying that ‘the Internet interprets censorship as damage, and routes around it.

Finally, its worth going back down the list of top ten attacks and asking how many

of them a firewall can stop.
Software Patches
A patch is a small piece of software designed to fix problems with or update a computer program or its supporting data. This includes fixing security vulnerabilities and other bugs, and improving the usability or performance. Though meant to fix problems, poorly designed patches can sometimes introduce new problems (see software regressions).

Patch management is the process of using a strategy and plan of what patches should be applied to which systems at a specified time.

Programmers publish and apply patches in various forms. Because proprietary software authors withhold their source code, their patches are distributed as binary executables instead of source. This type of patch modifies the program executablethe program the user actually runseither by modifying the binary file to include the fixes or by completely replacing it.

Patches can also circulate in the form of source code modifications. In these cases, the patches consist of textual differences between two source code files. These types of patches commonly come out of open source projects. In these cases, developers expect users to compile the new or changed files themselves.

Because the word "patch" carries the connotation of a small fix, large fixes may use different nomenclature. Bulky patches or patches that significantly change a program may circulate as "service packs" or as "software updates". Microsoft Windows NT and its successors (including Windows 2000, Windows XP, and later versions) use the "service pack" terminology.

In several Unix-like systems, particularly Linux, updates between releases are delivered as new software packages. These updates are in the same format as the original installation so they can be used either to update an existing package in-place (effectively patching) or be used directly for new installations.
In software development
Patches sometimes become mandatory to fix problems with libraries or with portions of source code for programs in frequent use or in maintenance. This commonly occurs on very large-scale software projects, but rarely in small-scale development.

In open source projects, the authors commonly receive patches or many people publish patches that fix particular problems or add certain functionality, like support for local languages outside the project's locale. In an example from the early development of the Linux operating system (noted for publishing its complete source code), Linus Torvalds, the original author, received hundreds of thousands of patches from many programmers to apply against his original version.

The Apache HTTP Server originally evolved as a number of patches that Brian Behlendorf collated to improve NCSA HTTPd, hence a name that implies that it is a collection of patches ("a patchy server"). The FAQ on the project's official site states that the name 'Apache' was chosen from respect for the Native American Indian tribe of Apache. However, the 'a patchy server' explanation was initially given on the project's website.
Security patches
If a patch is a piece of data used to update a software product, then a security patch is a change applied to an asset to correct the weakness described by a vulnerability. This corrective action will prevent successful exploitation and remove or mitigate a threats capability to exploit a specific vulnerability in an asset.

Security patches are the primary method of fixing security vulnerabilities in software. Currently Microsoft releases their security patches once a month, and other operating systems and software projects have security teams dedicated to releasing the most reliable software patches as soon after a vulnerability announcement as possible. Security patches are closely tied to responsible disclosure
Hot patching
Hot patching is a technology that allows patches to be applied without shutting down and restarting the system or the program. This addresses problems related to unavailability of service provided by the system or the program. A patch that can be applied in this way is called a hot patch.
Fuzzing
Fuzzing is a Black Box software testing technique, which basically consists in finding implementation bugs using malformed/semi-malformed data injection in an automated fashion

