Importances of agile software engineering and its mathodologies

What is Agile Software Engineering?

Agile software engineering is a set of related iterative and incremental software development methodology. The agile methodologies are Extreme programming, Scrum, Crystal, Dynamic systems development Method and feature driven development.

Each of the agile methods unique and its particular approach. These methods sharing a common vision and core values. They all are basically incorporate iteration and successive reviews. Its continuously provides good and improvement software systems. All the methods involve continuous planning, testing, integration and evolution of the software and project. If we compare with traditional waterfall process they all are light weight process. The important point is all the methods are allow the people working together and make the decisions effectively and quickly.

Why agile software engineering is important?

At present software projects needs to change for the client requirements. That's why we must have suitable methodology which must meets customer requirements and specification.

The agile method gives acceptable foundation for efficient software development. Such as minimal planning instead of long time planning. And agile doesn't involve the documentation instead its give support to customer involvement. And it allows the software development process in iterative behaviour.

Agile software engineering manifesto

1. Individuals and interactions over process and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contact negotiation

4. Responding to change over following a plan

Reference: - http://www.agilemanifesto.org/

Agile software engineering principles of agile

1. Deliver to client working software

The most important agile development principle is delivering the working piece of the software to client.

2. Welcome changing clients requirements

Even if it late in stage of development process. Agile methods applying change for the customer's competitive advantage.

3. Rapid feedback

The important principle of agile process, the purpose is increase the client satisfaction. Working closer with client for understanding their needs and analyses or develops their requirements, and gives opportunities for feedback.

4. Face to face communication

The effective way of pass the client requirements to the organization. Interview the people and face to face conversation.

5. Simplicity

This methodology assumes changing for the clients requirements. There for we should keep the simplicity of the software and development process.

6. Client satisfaction by rapid delivery of software

Provides early and continuous software piece to the clients.

7. Developers and stakeholder work together may be gives new skills and ideas to the development team.

Human factors

The software development team produce maximum human performance in the work place. That's why agile development team should follow the human factors during the development time in order to get quality of work.

1. Decision making ability

During the development time some problems may come when we consider a real development project. Therefore software team must have authorization to solve the problems.

2. Problem solving ability

At least one team member who has ability to solve the technical and project problem. This person must have human skills to solve the problems in different situations.

3. Common focus

Development team members may bring various skills and tasks to the project, and all these must be focused to deliver good software to customer to a particular time.

4. Self organization

Agile development team arrange and direct itself for the development tasks to be done. These tasks may be recourse scheduling, budget allocation, time management.

5. Communication ability

Development team members must have excellent communication skills and maintain the good relationship with clients. That will really helpful to gathering client requirements.

6. Collaboration

Does the agile methods are considered as silver bullet?

If we take software projects during development stages there are some failures and problems can be occurred. Such kinds of failures are,

a. Budget overrun

b. Schedule overrun

c. Insufficient quality

This kind of failures may occur even if we use a good software development method and proper planning and regular observation. Commonly a single methodology can't find solutions to these failures.

If we think a particular methodology for a problem that will represents the basic operation and guidelines to solve the problems. The successfulness of that methodology is depending on excellent management support and team working and external organizational factors. If we take agile software engineering methodology, it will give basic guide lines to solve the problems.

Now we talk about how far agile software methodologies giving support to defeat the software related problems.

''A methodology is a philosophy, guide or blueprint which provides methods/principles for the field employing it. In the context of information systems, methodologies are strategies with strong focus on gathering information, planning, and design elements'' Author- Glyn Jackson

Budget overrun

Commonly Agile software development methodology can have a set of solutions for these general problems such as budget overrun, schedule overrun and insufficient quality. The reason for the budget overrun can be occurred by an insufficient feasibility study. Feasibility study will produce project plan and budget estimations for the future stages of development. This can be sorted as economical, legal feasibility, technical feasibility. Economical feasibility is for to examine the system is suitable for the financial constraints. Agile methods have different stages called as feasibility study, it's for check the system whether is financially suitable or not.

''Feasibility Study is an exercise that involves documenting each of the potential solutions to a particular business problem or opportunity. Feasibility Studies can be undertaken by any type of business, project or team and they are a critical part of the Project Life Cycle''

http://www.method123.com/feasibility-study.php?gclid=CMXHv-mpr58CFWlr4wod_3Hd1A

Schedule overrun

Each and every software projects generally deliver this kind of a problem due to these reasons such as complexity of software, non experienced staff, unavailability recourses, risks etc. If we use the appropriate methodology or regular observation as well as proper recourse planning can solve the missed schedules.

Agile methods are gives support to defeat this type of missed schedules using incremental and iterative and quick delivery of the software. And using the time boxing where the whole project is divided by a multiple tasks with suitable time schedules. Uses the iterative and incremental development a client could make use of the software after the first increment has been developed. New increments are completed and they are incorporated with the existing increments. Due to this features, system functionality increase in quality with every increment.

Because software is developed by using incremental approach, the total complexity can be reduced and this will finally take control off the schedule overrun.

Insufficient quality

Nature of a Software project is depends on the final software piece and also a group of processes that has been continue for develop a software product. If its product is suitable with the customer needs we can make sure the product has been meets the required quality control. Since start all stake holders are working together with the project, the software development team could easily find the risks which may all over the life cycle stages of the project.

Does not the agile methods are considered as silver bullet?

Agile software engineering methods receive changes even if late in the development process this might generate the missing schedule and also quality causes. If we continuous the making of changes to software, finally this will end up corrupted code and also irregular functionalities. And these changes may raise the complexity of the software and this could be effect budget overrun and schedule overrun.

Cost of change

Graphs A and B describes how coast of change affect of software with time and no of changes. If we take graph A during the soft ware development time cost of change is raise. Early stage of software development making changes is possible with the budget. But at the final stages of the software development making changes are must need additional coast to change control procedures and effecting on the maintenance of the quality.

When agile methods accept and start to develop short term scale software piece, software quality may be poor. If the development time duration is less there is a chance to risk occurrence and it will be a high risk. That's why the team must take actions in order to reduce the risk occurrence. These outcomes may take extra time, coast and produce the poor quality of software.

Well organized team work is most important thing in agile development process. For this reason developers must have related skills that can be use in development period. Agile methodologies will failure for team works where its members ignore the responsibilities and duties.

Let's have a look about agile software engineering methods and how are they giving support to development process and what are the deliverable issues of schedule and budget overrun.

Agile software engineering methodologies

Extreme programming

Extreme programming provides support to agile development methods straightaway to change the client requirements as well as developer team working. Extreme programming also gives simplicity, client's satisfaction and set of practices that will happen during the development time such as planning, designing, coding, testing. After all agile methods allow changing requirements of customers. Extreme programming provides excellent support to developer teams. This methodology has a clear understanding of a risk. The aim of this method is to provide the software when it is needed. Extreme programming can be divided as four stages.

1. Planning

The main thing of the planning is assembling user stories to find out the problems situation. When the exact story starts to develop, customer can give the detail of that particular story and developer can get the clear idea of the customer expectations.

After the stories identified developer will define how long it will take to implement each stories and release plan. This plan can be used to divide for each customer stories. Customer can determine the priorities of each user story. That story may be the top of the priority list.

Small releases can be published from that team already developed from customer stories. The release gives a good value to the clients and its content particular functionality.

While the developing time the developing team measuring that how far work is to be done on the project. This is the most important step of extreme programming, finally this will find out schedule overrun and budget overrun.

2. Design

Extreme programming encourages the object orientation it's used to classify the object oriented classes to a specified release. For this reason xp using CRC cards. The problem of the CRC cards contains written designing. During the development time we may identify the risks. Risk will results in several problems such as budget and schedule overrun. Regarding this kind of problems risk avoidance or risk minimization are important to projects in order to solve these risks. If we use reuse codes and classes, there is no need to maintain the work instead we need to remove redundancy, and irregular functionality. These will help to the projects to raise the quality and saving times.

3. Coding

Extreme programming methods need to keep in touch with client in the all stages of developing, to avoid the functionalities. Before writing the code, verification may be performing to ensure the system functions are include by the customer stories and appropriate releases.

The main part of the coding is pair programming that means two people worked, release the code, testing together and find out the errors. That is a good way of increasing quality and the solve the problems.

4. Testing

All coding should be done by unit testing before integrated.

How Extreme programming fix budget overrun, schedule overrun, insufficient quality, and complexity of the software?

Customer stories - stories provides by customer and its saying what their needs. From this customer stories developer could understand that what their expectations and what we are going provide them. Stories will indicate the problems, so the developer can easily understand and tae decision about the scenario. This point is extremely helpful to reduce the complexity of the development process.

Release planning - this method easily identify the schedule and each release according to the stories. Assigning the recourses to particular release to be done using the proper management tools. So the team can develop the recourse each and every task with suitable schedule.

Testing - this extreme programming method suggest development team do not move to the code after stories have been developed, and wait up to they develop a unit test cases that has to be apply each of the customer stories. This testing will help to improve the system according to the requirements. Integration testing also to be done for the purpose of checking interconnections between modules. Testing will help to improve the quality of the software.

CRC cards - these cards using to illustrate about objects. Class of the objects must write top of the CRC cards and tasks of that class. CRC cards used to find out the object which is send messages to others. And this card can use to do the integration testing and it will reduce the complexity and errors.

Reference: - http://www.extremeprogramming.org/rules.html

