Image denoising based on double density

Image DENOISING
Denoising is the first pre-processing step to analyze the image. Removal of noise without deleting useful information and preserving original data is called denoising. There are two basic methods are used in image denoising purpose.
· Filtering method

· Transform method
Filtering method
· Mean filter

· Gaussian filter

· Unshared masking filter

· Median filter

· Midpoint filter

· Minimum mean squared error filter
Transform method
For denoising there are two transforms methods are available.

Wavelet Transform

Fourier Transform
WAVELET TRANSFORM
Wavelets are mathematical functions that analyze data according to scale they aid in studying a signal in different windows or at different resolutions [2]. For instance, if the image is viewed in a large window,

gross features can be noticed, but if viewed in a small window, only small features can be noticed. Wavelets provide some advantages over Fourier transforms. Wavelets can be used in applications such as image compression, turbulence, human vision, radar, earthquake prediction, etc. The term “wavelets” is used to refer to a set of orthonormal basis functions generated by dilation and translation of a mother wavelet ψ[ 2].
TYPES OF WAVELETS
There are many types of wavelet available to use in wavelet transform. The most commonly used orthonormal wavelets are
1. Haar wavelets

2. Daubechies wavelets

3. Coiflet wavelets

4. Symlet wavelets
PROPERTIES OF WAVELET TRANSFORM
· Locality: The wavelet coefficients is localized simultaneously in time and frequency

· Multiresolution: Wavelet coefficients are compressed and dilated to analyze at a nested set of scales.
Compression: The wavelet transform of real-world signals tend to be sparse.
DISCRETE WAVELET TRANSFORM
To overcome the redundancy problem e in CWT, the wavelets are not continuously scaled and translated but in discrete steps. The modified wavelet [6] is given by
Figure 1Different types of Wavelet
Wavelet where j and k are integers and 0 > 1 is a fixed dilation step. The translation factor 0 depends on the dilation step. We usually choose 0 = 2 so that the sampling of the frequency axis corresponds to dyadic sampling. For the translation factor we usually choose 0 = 1 so that we also have dyadic sampling of the time axis. Hence Discrete wavelet transform on real orthogonal wavelet bases may be written as:

and Inverse DWT is given by Wavelet
Wavelet decomposition of an Image
For a 2D image, wavelet decomposition can be performed by passing the image through the series of filter bank stages. The Wavelet breaks the image into four sub-sampled images denoted by LL, HL, LH and HH. The result consists of one image that has been high-pass filtered in both the horizontal and vertical directions (HH), one that has been high-pass filtered in the vertical and low-pass filtered in the horizontal (LH), one that has been low-pass filtered in the vertical and high-pass filtered in the horizontal (HL) and one that has been low-pass filtered in both directions (LL). The LL band can be further decomposed in the same way. If the high-pass and low-pass filters are properly chosen, the original image can be reconstructed from the inverse transform without loss of any information.
WAVELET DENOISING
The simplest non-linear shrinkage technique is thresholding. In the language of approximation theorist, the thresholding is sometimes called the sampling operator. Wavelet thresholding is a popular approach for denoising due to its efficiency and simplicity and therefore is an extensively investigated noise reduction method. It guarantees better of convergence and most of it was focused on statistical modeling of wavelet coefficients.

Small wavelet coefficients are dominated by noise while coefficients with large absolute values carry more information than noise. The basic principle behind wavelet thresholding is Multiresolution analysis i.e. by multilevel wavelet decomposition the detail and approximation coefficients are obtained[2,3]. Variance of white noise at various level decreases regularly as level increases and the variance of wavelet transform of the available signal are not related to change of scale.Threshold function is also called as shrinkage function since it shrinks the data to a certain amount depending on the threshold. In general shrinkage is referred to soft thresholding.
3.3 THRESHOLDING FUNCTION
The most popular thresholding rules are:
· Hard-thresholding

· Soft-thresholding

· Hyperbolic thresholding
Soft Thresholding
Here, also coefficients below the threshold are set to zero. The magnitudes of the coefficients above the threshold are reduced by an amount equal to the threshold. For an estimated threshold T, the soft-thresholding of a coefficient x can be written as

In soft-thresholding, the estimates are biased: large coefficients are always reduced in magnitude. The reconstructed image is often over-smoothed[2,3].

The above equation attenuates the large coefficients less as compared to the soft-thresholding rule and it is continuous.However, soft thresholding is commonly used due to its advantages, simplicity, and popularity.
DESIGN OF DOUBLE DENSITY WAVELET FILTER BANK
. The wavelets are constructed using maximally flat FIR filters in conjunction with spectral factorization and extension methods for Para unitary matrices[6].
Spectral Factorization
The power spectrum Px(ejω) of a wide -sense stationary process is a real -valued, positive, and periodic function of w[7]. If Px (ejω) is a continuous function of w ,then these constraints imply that Px (z) may be factored into a product of the form Px(z)=σ02Q(Z)Q*(1/Z*) This is known as the Spectral factorization of px (z).
Double Density DWT with FIR Filters
To construct a doubledensity DWT with FIR filters we will use the over sampled filter bank. The filter h0 (n) will be a low-pass (scaling) filter, while h1(n) and h2(n) will both be high-pass (wavelet) filters[6,8]. To develop the perfect reconstruction conditions we use standard multirate identities to write Y(z) in terms of X(z). (z) Y(Z)=1/2[H0(z)H0(1/z)+H1(z)H1(1/z)+H2(z)H2(1/z)]X(z) +1 /2 [H0 (z)H0 (-1/z) + H1 (z)H1 (-1/z) + H2 (z)H2 (-1/z)]X(-z)

For perfect reconstruction,Y(z)=X(z),it is necessary that

[H0(z)H0(1/z)+H1(z)H1(1/z)+H2(z)H2(1/z)=2

H0 (z)H0 (-1/z) + H1 (z)H1 (-1/z) + H2 (z)

H2 (-1/z)=0

These conditions are somewhat more complicated than those arising in the design of critically sampled filter banks.

Filter bank is shown in Figure 4 is over sampled by 3/2, but we have called the corresponding transform the double density DWT. This is because, when the filter bank is iterated a single time on its low pass branch (h0), the total over sampling rate will be 7/4. For a three-stage filter bank, the over sampling rate will be 15/8. When this filter bank is iterated on its low pass branch indefinitely, the total over sampling rate increases towards two.The three-channel filter bank which we will use to develop the double density DWT corresponds to a wavelet frame based on a single scaling function Φ(t) and two distinct wavelets Ψ1(t) andΨ2(t).
CONSTRUCTING the Scaling Filter
In contrast to the design of critically sampled dyadic wavelet systems, the high-pass wavelet filters are not uniquely determined by the lowpass scaling filter h0(n). There is some freedom in how the high-pass filters are chosen .we obtain the minimal-length low-pass filter h0(n) satisfying the perfect reconstruction conditions and the constraints .As in Daubechies' construction, the filter h0(n) can be obtained through the spectral factorization of a suitably designed symmetric filter. After that design two high pass filter[8]. It will be convenient to define the autocorrelation function for each of the three filters hi(n),

pi(n) := hi(n) *hi(-n) =hi(k) hi(n + k).

P0(ω)+ P1(ω)+P2(ω). = 2

(4.42)
Constructing the Wavelet Filters
Once the low-pass filter h0(n) is obtained, the two (non-unique) wavelet filters h1(n) and h2(n) can be obtained using a polyphase formulation[8]. Define the polyphase components Hi0(z) and Hi1(z) through

Hi(z) = Hi0(z2) + z-1 Hi1(z2); i = 0; 1; 2 and define the polyphase matrix

H(z)=

The perfect reconstruction condition can be written as

H(z)Ht(1/z) = I2

The matrix H(z) is said to be a 2Χ3 lossless system [.Once we find four components H10, H11, H20 and H21 so that H(z) satisfies equation then form h1(n) and h2(n).

One way to obtain a 2 Χ 3 lossless system is to first determine a 3 Χ 3

lossless system and then delete the last row. Define (z) to be the matrix

(z)=

where only H00(z) and H01(z) are so far determined[8]. We will design the square lossless system alt="" height="21" width="17" />(z), or paraunitary matrix, to satisfy

t(1/z) (z) = (z) t(1/z) = I3.

Then

H00(z)H00(1/z)+H01(z)H01(1/z)+H02(z)H02(1/z)=1 Or

H02(z) H02(1/z)=1-H00(z)H00(1/z)-H01(z)H01(1/z)

Therefore H02(z) can be obtained by spectral factorization. H02 (z) is not uniquely defined[8].

Once we obtain H02 (z) we have the first column

of (z). The remaining two columns of (z) can be found using existing algorithms for paraunitary completion.Once the 3Χ3 paraunitary matrix (z) is completely known, the2 Χ3matrix H(z) is obtained by deleting the last row of (z). After getting one scaling coefficient and two wavelet coefficients the filter bank is designed, two level DDDWT decomposition is shown in the figure 4.4.
DOUBLE DENSITY DWT
The double density DWT is an improvement upon the critically sampled DWT with important additional properties.
1. It employs onescaling function and two wavelets, which are designed to be offset from one another[8]

2. The double density DWT is overcompleting by a factor of two.

3. It is nearly shift -invarient.
In two dimensions, this transform outperforms standared DWT interms of denoising[10].

The oversampled DWT (discrete wavelet transforms) is differs from the undecimated DWT. The undecimated DWT is a shift-invariant discrete transform; however, it has an expansion-factor of logN: it expands an N-sample data vector to N logN samples. A tight frame is one where the signal reconstruction can be performed with the transpose of the forward transform. The wavelets presented below are much smoother than what can be achieved in the critically sampled case. For a given number of wavelet moments and a given number of zeros at z = 1 of the scaling filter H0(z), the wavelets presented below are of minimallength filter.The DWT presented in this chapter expands an N-sample data vector to 2N samples. Independent of the number of scales over which the signal decomposition is performed. While it does not yield an exactly shift-invariant discrete transform. .It is more nearly shift-invariant than the critically sampled DWT.
DDDWT COMPUTATION
The 2D extension of wavelet algorithm is the 1D algorithm applied to the both x and direction of the 2D imagel. Let as consider a 2-D image is an square matrix of the image values. In the case where the 2D imageis an image we call these values pixel values corresponding to the intensity of the optical reflection. Consider the input mage x(m,n) as an N×N square matrix. We may process the image along the x direction first. That is decompose the image row wise for every row using the 1D decomposition algorithm. Because of he downsampling operation the resultant matrix are rectangular of size N×N/2. These matrices are transposed and they are processed row wise again to obtain four N/2×N/2 square matrices namely LL, LH, LH, HL, HH, HH, HL, HH AND, HH.
THRESHOLD SELECTION RULES
Threshold selection rules are based on the underlying model y = f(t) + e where e is a white noise N(0,1). Dealing with unscaled or nonwhite noise can be handled using rescaling output threshold. Threshold determination is an important question when applying threshold scheme. A small threshold may yield a result close to the input, but the result may be still being noisy. A large threshold on the other hand, produces a signal with a large number of zero coefficients. This leads to an overly smooth signal.Paying too much attention to smoothness generally suppresses the details and edges of the original signal and causes blurring and ringing artifacts. One of the popular threshold method is Universal threshold.
MINIMAX THRESHOLD
Minimax uses a fixed threshold chosen to yield minimax performance for mean square error against an ideal procedure. The minimax principle is used in statistics in order to design estimators. Since the denoised signal can be assimilated to the estimator of the unknown regression function, the minimax estimator is the one that realizes the minimum of the maximum mean square error obtained for the worst function in a given set. Calculate the mean square by using the formula(6.1)

R.M.S Error=

MATLAB7 version software is used to find the threshold value. For different threshold value the mean square is obtained at a particular variance value in a different image it's shown in the table 6.1. Each image has a low mean square error at a particular threshold. Different images have a different minimum mean square error at a different threshold. From the different threshold choose the maximum threshold value. That value chosen as best threshold value for denoising. For example variance equal to 20 the best threshold value obtained by

Maximum of (16,16,16,14) and it's shown in the table 1. The same procedure is repeated for different variance. From the results the best threshold values are lies in the range of 12 to 20 for DDDWT method it's shown in the figure7 .The same procedure is followed DWT method to choose the best threshold value. The best threshold values are lies in

the range of 14 to 18 for DWT method . With this threshold range the images are denoised by using two different methods (DWT and DDDWT) .The performance measure value obtained for different variance .The values are shown in table

The results reveal that threshold value 16 performs better than other threshold in terms of the PSNR measure.
SIMULATION AND RESULTS
From the table 6.3 and 6.4 threshold value 16 is perfsorm better results than other values. So threshold is chosen as 16. The various test images are corrupted by adding random noise of different levels. The Double Density Discrete Wavelet Transform is applied on these noisy images through the designed filter bank structure. MATLAB 7.0 version software is used for simulation. The performance measure value obtained and the values are shown in table 2.The test shows filter length six yields the maximum PSNR value. Discrete wavelet transforms with daubechies filter of three levels of decomposition is taken. The performance measure PSNR has been computed. Using the same test image and the above mentioned noise is added .Then Double Density Discrete Wavelet Transforms with daubechies filter of three levels of decomposition is taken. From the table 6.3 and 6.4 the test results show that Double Density Discrete Wavelet Transform provides better Peak signal to noise (PSNR) than discrete wavelet transforms.

Better PSNR and visual quality is achieved for the Double density discrete wavelet transforms than DWT. It has shown in the figure 8 and 9.
Table 1 R.M.S Value Comparison with Different images in DDDWT Method(variance=20)
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Table 2 PSNR Comparision for Different Filter ength
	Filter

length
	Variance

in(db)
	Denoised PSNR value in (db)

	
	
	Lena
	Barbera
	Camera

man
	Einstein

	4
	10

15

20
	27.27

27.28

26.84
	26.61

26.58

26.33
	27.30

27.32

26.95
	26.48

26.45

26.19

	6
	10

15

20
	27.78

27.82

27.37
	26.92

26.86

26.45
	27.33

27.42

27.12
	26.59

26.55

26.23

	12
	10

15

20
	27.66

27.80

27.31
	26.62

26.64

26.32
	27.26

27.25

26.83
	26.45

26.38

25.98


Threshold value =16 Noise variance =15 Denoised image

Threshold value =16 Noise variance =20 Denoised image
CONCLUSION
In this paper images are denoised by using double density discrete wavelet transform. A separable 2D double density DWT can be obtained by alternating between rows and columns, as is usually done for 2D separable DWT. In Double Density Discrete Wavelet filter bank for the 2D case, the 1D over sampled filter bank is iterated on the rows and then on the columns. This gives rise to 9 2D branches. One of the branches is a 2D low pass scaling filter while the other 2D wavelet filters.

Test results shows that Double Density Discrete Wavelet Transform performs better than Discrete Wavelet Transform in terms of the PSNR measure and in visual perception[10].
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