IP switching

I. INTRODUCTION
The Internet is overwhelmed with traffic, with user demand for bandwidth well in excess of supply. This should come as no great surprise — the number of users of the Internet has grown exponentially for ten straight years, with each user adding more demand to the network. Over time, each user's traffic tends to increase, adding further to the demand. And at the same time, a larger proportion of traffic traverses multiple domains, swamping campus backbones, corporate intranets, and the core of the Internet. In response to the demand, network equipment vendors and service providers have developed and deployed faster and faster routers. Yet demand for bandwidth far outstrips the current link and switching capacity of the Internet.

The performance of network routers is usually limited by two main tasks: (1) Examining the destination address of incoming datagrams, indexing into a routing table to determine the next hop, and (2) copying incoming datagrams to their outgoing interface. The routing lookup is not straightforward; the router must find the longest prefix match over a space of approximately 231 possible addresses. It is unusual for a router today to perform more than 100,000 address lookups per second. Perhaps surprisingly, the performance of most current routers is limited by their ability to copy data between interfaces. This is because datagrams frequently traverse shared busses multiple times before reaching their outgoing interface.

A variety of techniques have been proposed to accelerate routing lookups [7], and replace shared busses with switched backplanes [8] [9], Alternative techniques have been proposed that replace longest prefix routing lookups with simple exact matching, and use layer-2 switches to perform fast data copying. This generically call these techniques "label swapping"; they include IP Switching [1], CSR [4], IP over ATM [5], ARIS [3], and Tag Switching [2].

IP Switching integrates IP routing with fast lookup and copying mechanisms of an ATM switch1. Based on IFMP (Ipsilon Flow Management Protocol) [10] [11], IP Switching has received a lot of attention. The CSR proposal is similar to IP Switching in many respects, so our findings generally apply to the CSR architecture. On the other hand, ARIS and Tag Switching are very different, so our results do not represent the performance of these label swapping systems.

This is assumed that the switch is surrounded by a number of identical neighbours. Our switch begins by establishing adjacency with its neighbours, identifying them as fellow IFMP switches. IP datagrams arrive at the switch encapsulated into AAL5 frames and segmented into ATM cells. These datagrams are part of a flow between two user processes, or between two end points in the network. Initially, all datagrams from all flows are received and transmitted on a single, default ATM virtual circuit (VC). Our switch attempts to identify flows, classifying them according to their expected duration. If the switch decides that the flow will be long lasting, it will attempt to establish a unique VC for the flow, so that it may be switched quickly in hardware. The switch tells its upstream neighbour to begin sending all datagrams that are in that flow on a separate VC. This is achieved by sending an IFMP redirect message to the next switch that is upstream in the flow.

Similarly, our switch will receive a redirect message from its downstream neighbor when the downstream neighbor detects a flow. The redirect messages as binding the flow to an ATM virtual circuit. When the flow has been successfully bound, our switch can perform hardware layer-2 switching from the incoming VC to the outgoing VC, without consulting any routing tables or performing any other processing.

This is shown in Figure 1, where the first datagrams in a flow must traverse the 'slow path' through a conventional IP router. The router reassembles cells into AAL5 frames, removes the IP datagram, and makes a routing decision. The datagram is encapsulated and segmented into cells before being sent on its way. In addition, a packet classifier attempts to recognize flows and estimate whether they are worth binding to an ATM VC. If so, a redirect message is sent to the upstream switch, and future datagrams will travel along the fast path. Higher performance is achieved if a large proportion of the datagrams are able to take the fast path. For this reason, The percentage of datagrams switched as the primary metric in our study.
II. FLOW CLASSIFICATION
Each IP Switch contains a flow classifier: an entity that identifies flows and decides whether or not they should be bound to an ATM VC. IFMP defines two types of flow: (1) Flow Type 1: a flow of IP datagrams between two processes. In other words, datagrams that all contain the same values for the following IP and transport fields: IP version, source and destination addresses, header length, type-of-service, time-to-live (TTL), protocol, and transport port numbers. (2) Flow Type 2: a flow of datagrams between two IP addresses. All the datagrams in a type 2 flow contain the same IP version, source and destination addresses, header length, and TTL.

An IP Switch must have a policy to determine when a flow will be bound to an ATM VC. This policy is outside the scope of the IFMP protocol description, but must be present in any IFMP implementation. The IP Switch designer may choose from a variety of techniques to determine if a flow should be bound to a VC. On one hand, it is clearly desirable to bind as many flows as possible, because this will enable a large number of datagrams to be switched at layer-2, reducing the number of layer-3 routing decisions. On the other hand, if short-lived flows, or flows with a small number of datagrams are switched, this will waste the VC space of the switch. It will also lead to a large number of redirect messages.

Our simulation uses three types of flow classifier. Each classifier is designed to switch a large number of datagrams at layer-2, while wasting a small number of VCs, and sending as few redundant redirect messages as possible. The first classifier is the X/Y Classifier. This classifier watches until it sees X datagrams within a Y second window that all match a specific flow. The switch then binds the flow to an ATM VC, switching any future datagrams that meet that flow specification. The motivation behind the X/Y Classifier is that if there have already been X datagrams from a flow in Y seconds then it is reasonable to expect that there will be more datagrams from this flow in a short amount of time. The only remaining problem is to determine values for X and Y.

The second classifier is the Protocol Classifier, which simply assigns all TCP packets to flows. The rationale for this classifier is that connection-based communications generally last longer and have more datagrams sent over a short time than connectionless based communications.

Finally, the Port Classifier uses the transport-layer port numbers to decide which flows to bind. In our study, we decided to bind all TCP flows going to or from the following ports: ftp-data (20), telnet (23), smtp (25), http (80), and nntp (119). The goal is to select those applications which tend to generate long-lasting flows, and/or flows which contain a large number of datagrams. It could be argued that additional or alternative services/ports be used instead of the ones above; these were picked because they made up the largest percentage of TCP packets seen in the traces we analyzed.
III. DELAYS IN FLOW CLASSIFICATION
There are also several delays associated with the creation and deletion of flows, with values unspecified in the IFMP description.
These delays are either chosen or will occur naturally in any implementation. The following delays were modeled by our simulation:

A. Flow Creation Delay
In practice, there is a delay between the time a flow is detected, and the time at which the upstream node begins sending datagrams on the new VC. This delay is due to the time required to form the redirect message, its propagation delay upstream, and the processing time of the message at the upstream node. We model this delay as a constant. Note that this delay is not directly related to the maximum connection establishment rate of the IP Switch; we do not have to wait for one connection to be fully established before beginning to establish another.
B. Flow Deletion Delay:
There must be some decision made as to when to delete a flow. According to the IFMP specification, the upstream neighbor will time-out a flow if it does not receive additional redirect messages. To prevent flows from timing out prematurely, a switch sends redirect messages upstream at regular intervals. In our simulation, we approximate the time-out by deleting a flow after some constant number of seconds of inactivity.
IV. GIGABIT ROUTERS
A number of projects to provide high speed routing are under way, of which information is available for: the Multigigabit Router [1], IP/ATM [2], the Cell Switch Router (CSR) [3], and IP switching [4]. Also, the NetStar GigaRouter is a commercial implementation of a gigabit router [5]. These will serve to illustrate the basic approaches to designing for high speed routing.

All of the designs use the same functional components Illustrated in fig. 2. The line card contains the physical layer components necessary to interface the external data link to the switch fabric. The switch fabric is used to interconnect the various components of the gigabit router. The forwarding engine inspects packet headers, determines to which outgoing line card they should be sent, and rewrites the header. The network processor runs the routing protocols and computes the routing tables that are copied into each of the forwarding engines. It handles network management and housekeeping functions and may also process unusual packets that require special handling.

A switch fabric is used for interconnection as it offers a much higher aggregate capacity than is available from the more conventional backplane bus. The Multigigabit Router will use a 15 port crossbar switch with each port operating at 3.3 Gbps. The NetStar GigaRouter also uses a crossbar switch fabric with 16 ports each operating at 1 Gbps. The IP/ATM, CSR, and IP switch solutions use asynchronous transfer mode (ATM) for the switch fabric.

In the case of the IP switch a complete ATM switch, not just a fabric, may be used. This allows use of more highly integrated switch solutions, that, for example, integrate line card and switch fabric functionality. The advantage of an ATM switch is that the hardware is standardized and is available in many different sizes from different vendors with different cost/functionality tradeoffs. Additionally, advanced features such as hardware Quality of Service (QoS) support and hardware multicast are typically available in ATM switches. The disadvantage of an ATM switch is that it Fig. 2 - General Structure of Gigabit Router is cell, not packet, oriented and is connection oriented unlike the connectionless network protocols that are the subject of high-speed routing.

connection oriented unlike the connectionless network protocols that are the subject of high-speed routing. The forwarding engine may be a physically separate component or may be integrated with either the line card or the network processor. If the forwarding engine is a separate component the packet forwarding rate may be varied independently from the aggregate capacity by adjusting the ratio of forwarding engines to line cards.

This is the approach taken in the Multigigabit Router and is an option in the IP/ATM solution. However, separating the line card and the forwarding engine creates additional overhead across the switch fabric. The NetStar GigaRouter integrates a forwarding engine with each line card. In the current realization of an IP switch the forwarding engine is combined with the network processor although combination with the line card or a separate implementation is not prohibited by the architecture.

A key difference between the router approach and the IP switching architecture is that IP switching allows most data between ATM ports to traverse the switch without being handled at all by a forwarding engine, whereas a router approach always requires use of at least one forwarding engine. Measurements from the Internet indicate that the average packet size is now about 2000 bits [4]. This has increased from an average of 1000 bits just over five years ago because of the increase in large transfers due to web usage which now represents almost 50% of the Internet's traffic. Thus at present we need a forwarding rate of about 500 kpps for each 1 Gbps of traffic, though this may change as the traffic profile changes. Two approaches have been proposed to achieve packet forwarding rates of this magnitude: the silicon forwarding engine; and a highspeed general purpose processor with destination address caching using an on-chip cache.
V. DESIGN OF THE FORWARDING ENGINE
To build a forwarding engine in silicon we need a treestructured routing table in memory and a tree walking ASIC [6]. Each IPv4 route in the table requires a minimum of about 16 bytes so for a large table, of say

250,000 routes, we require about 4 Mbytes of memory.

This is within the realms of possibility for current SRAM.

The number of memory accesses per route lookup is about 1 + logN, where N is the total number of routes in the table. So if we assume 10 ns SRAM, one full route lookup every 200 ns is possible. This gives us a forwarding engine capable of forwarding 5 million packets per second (Mpps), enough for an average of about 10 Gbps of traffic. Worst case it will handle 1.6 Gbps of 40 byte packets at wire speed. In addition, for large routing tables, techniques exist that can significantly reduce the number of memory references required.

The same hardware can be extended to handle multicast forwarding and more complex policy-based forwarding if some flexibility is provided in the fields from the packet header used as the key for the lookup. The forwarding engine of the Multigigabit Router uses a 415 MHz general purpose processor with destination address caching using an internal (on-chip) cache. The internal cache is a least recently used cache of 9000 IPv4 destination addresses. An external memory of 8 Mbytes holds a complete routing table of several hundred thousand routes. This forwarding engine is capable of forwarding about 11 Mpps if all of the requested destinations are available in the cache. Multicast packets are handled by the full routing table rather than the cache as they require additional processing because the forwarding decision is based upon the source address as well as the destination (multicast) address. Additional processing is also required to offer firewall filtering, or other policy-based forwarding decisions. Packets with unusual options are sent to the network processor. The design of the Multigigabit Router requires a performance from the forwarding engine of 6.5 Mpps at full speed for average traffic. It is estimated that the forwarding engine can perform at full speed with aminimum cache hit rate of about 60%.

Under worst case conditions, where every packet receives a cache miss, the forwarding performance for average traffic degrades to about 50% of best case performance.

There is an ongoing debate in the research community regarding the use of caching in a forwarding engine designed for a gigabit router. The question concerns whether there is sufficient locality in a stream of packets in the Internet for caching, with a moderate sized cache, to be useful. The silicon forwarding engine can maintain its maximum forwarding rate regardless of the past history of destination addresses in the traffic stream. For the caching solution in the Multigigabit Router to perform at full rate there must be at least an 60% chance that any packet destination has already been seen in the recent past and that the entry is still in the cache. A study of a recent traffic trace taken from the Internet gave a 95% cache hit rate with a 6,000 entry cache [7]. However, this study was based on a packet trace from a 37 Mbps traffic stream. It is debatable whether the same amount of locality would be observed in traffic streams in excess of 1 Gbps. Also the traffic profile of the Internet changes over time so the debate continues.

The NetStar GigaRouter includes a forwarding engine on each line card with a 1 Gbps connection to the switch fabric. The forwarding engine is based on a SPARC microprocessor with hardware assisted route lookups so that no route caching is required. It supports a routing table of up to 150,000 routes. With a full routing table the route lookup takes 3 ms but the highest packet forwarding performance of currently available line cards is 136 kpps. This is well below the 500 kpps target rate needed for a 1 Gbps port.

The argument against a silicon based forwarding engine is that a hardware solution is fixed. Applications within the Internet, and thus the traffic profile, change over time and a fixed forwarding engine may not be able to track these changes. For example, multicast traffic may become much more important from multimedia applications and a move to IP version 6 may occur sooner than expected, both of which could invalidate a fixed implementation.

A forwarding engine designed to perform a high-speed destination address to outbound interface lookup is sufficient to offer a simple, Under worst case conditions, where every packet receives a cache miss, the forwarding performance for average traffic degrades to about 50% of best case performance, best-effort packet forwarding service. But additional functionality will be required of the next generation of routers. This includes: multicast, quality of service differentiation, firewall filtering and more complex policy-based routing. To offer such functionality one needs to base the routing decision on more fields in the packet header than just the destination address.
VI. IP SWITCHING
IP switching is an alternative to the Gigabit Router. An IP switch maps the forwarding functions onto a hardware switch such as an ATM switch. A similar idea occurred independently, at about the same time, to three groups. The devices based upon this idea are called: IP/ATM [2], the IP switch [4], and the Cell Switch Router (CSR) [3,8]. Another mechanism for binding forwarding functions to an ATM VCI is also discussed in [9]. In addition, the Cisco Tag Switching proposal also appears to be similar to these earlier works [10]. Unlike some approaches, IP Switching may be used with any higher level IP functionality; it is not restricted to particular IP routing protocols or routing domains, and may be used, e.g., between an Internet Service Provider (ISP) and its customers or between ISPs.

Each approach uses the concept of a flow. A flow is defined as a sequence of packets that are treated identically by the possibly complex routing function. An example of a flow is a sequence of packets sent from a particular source to a particular destination (unicast or multicast) that are forwarded through particular ports with a particular QoS. The forwarding and handling of each flow is determined by the first packets in the flow.

Each of the above three solutions uses an ATM switch as the switch fabric for a high-speed router. Incoming flows are mapped onto ATM virtual channels (VCs) established across the ATM switch. Only one or a few packets from each flow need be inspected to perform the mapping and establish an ATM virtual channel. Once the virtual channel is established for a flow, all further traffic on that flow can be switched directly through the ATM switch, greatly reducing the load on the forwarding engine(s).

The IP/ATM solution uses a pool of pre-established permanent virtual channels (PVCs) that are taken by active incoming flows. Packets on a new flow are not forwarded until a PVC has been activated. The IP switch uses a protocol, IFMP (RFC1953), to propagate the mapping between flow and VCI upstream and forwards packets using the forwarding engine until the cut-through connection is established across the ATM switch. The Cell Switch Router attempts to be more general than the IP switch in that it will permit entire Classical IP over ATM (RFC1577) subnets between CSRs. It proposes using the RSVP protocol to propagate the mapping between flows and VCIs. To examine this class of device we will discuss the Ipsilon IP Switch in detail.
A. Flow Classification in Gigabit Routers
An important function of the flow classification operation is to select those flows that are to be switched in the ATM switch and those that should be forwarded packet-by-packet in the forwarding engine. Clearly one wishes to select long duration flows with a lot of traffic for switching. Multimedia traffic: voice, image, video conferencing, etc., offers an example of long duration flows where there is a good probability of a high traffic volume. Many multimedia applications also require multicast which makes it very suitable for switching across an ATM switch making use of ATM's hardware multicast capability. Short duration flows consisting of a small number of packets should be handled directly by the forwarding engine. Name server queries and brief client-server transactions are examples of traffic that are probably not worth the effort of establishing a switched connection.

For the flows selected for switching, a virtual channel must be established across the ATM switch. ATM switching requires that all arriving traffic be labelled with a virtual channel identifier (VCI) to indicate the virtual channel to which it belongs. So IP switching requires a protocol to distribute the association of flow and VCI label upstream across each incoming link. Every packet on a flow that is switched through a network of IP switches must be labelled with a VCI. But the task of cache lookup and packet labelling is propagated upstream to the edge of the network. The task of labelling each packet typically involves more effort than simple forwarding because it must examine more fields than the destination address. However, once a virtual channel is established, this flow labelling need

only be performed at a single location within the IP switch network; a traditional router network would need to perform the route lookup at every hop. Another advantage is that the rate of packet arrival is typically much lower at the edge of the network than in the center. Thus, for switched flows, per-packet work is offloaded from the forwarding engines in the center of the network at the cost of slightly increased per-flow work at the edge of the IP switch network. If the device on the edge of the network is a directly connected host, the classification and labelling operations can be trivially integrated into the host protocol software.

The set of virtual channels across the switch (or equivalently the VCI table on each link of the switch)

may be regarded as a cache of flow forwarding decisions. In this sense it uses caching similar to the Multigigabit Router. In the Multigigabit Router the routing decision for every incoming packet is cached. However, in IP switches only selected flows are cached in the ATM hardware — the cache is explicitly managed.

The debate regarding whether caching is a good idea is equally applicable to IP switching, in fact, even more so since it takes more work to establish a switched flow. But since the forwarding of switched flows is implemented within the ATM switching hardware the forwarding engine of an IP switch only has to deal with the classification and forwarding of new flows and the forwarding of packets belonging to flows that are not switched. This allows some flexibility in the dimensioning of the forwarding engine depending upon the anticipated ratio of flows to be switched and packets to be forwarded and the traffic characteristics of the switched flows. In summary, the IP switch provides high-speed routing by low-level switching of flows (equivalent to cached routing decisions). It defines a protocol to indicate these flows, and to associate a link layer label with each flow, to the upstream network node. This enables the switching. All flows are classified, and the forwarding engine is optimized for flow classification and for forwarding packets on those flows that are decided should not be cached in the switch fabric.
VII. IP SWITCH IMPLEMENTATION
We now turn our attention to the Ipsilon IP Switch implementation and the two protocols required to support IP switching. The IP Switch is constructed from two components, an ATM switch and the IP Switch Controller, fig. 2. The IP Switch Controller is a high-end Pentium Pro machine running an operating system that continues to bear some resemblance to UNIX. One of the ports on the ATM switch is connected to an ATM interface on the IP Switch Controller and is used or both control and data transfer. The control protocol used between the switch and the controller is the General Switch Management Protocol, GSMP (RFC1987) [11], which has been designed to give the IP Switch Controller full control of an ATM switch. The Ipsilon Flow Management Protocol, IFMP (RFC1953) [12], is the flow forwarding- cache distribution protocol. It runs between the IP Switch Controller and its peers across each external link. In comparison with fig. 1, the line cards are part of the ATM switch and the forwarding engine is implemented in software within the IP Switch Controller.

The IP switch is implemented in two components to allow a separation between hardware and software. Thus any ATM switch that supports RFC1987 may be used for the switching component. Different ATM switches are designed with different size, cost, and functionality tradeoffs so it makes sense to support a choice. This choice goes both ways. GSMP can also support a standard ATM Forum control protocol stack instead of the IP Switch Controller software. So a choice of network control software is possible for the same hardware.
VIII. GENERAL SWITCH MANAGEMENT PROTOCOL (GSMP)
The design goal for the GSMP interface is to be as close to the actual switch hardware as possible and yet capable of controlling all (reasonable) ATM switch designs. These are conflicting requirements. GSMP is a simple master-slave, request-response protocol. The master (switch controller) sends requests and the switch issues a positive or negative response when the operation is complete. Virtual paths and virtual channels are assumed to be unidirectional (a requirement of RFC1953). Unreliable message transport is assumed between controller and switch for speed and simplicity. (The link between switch and controller will either be very reliable, or broken, in which case the overhead of adding error detection and retransmission through a protocol like SSCOP is unnecessary. All GSMP messages are acknowledged and the implementation handles its own retransmission.)

GSMP runs on a single, well-known virtual channel (VPI 0, VCI 15). All messages use an AAL-5 LLC/SNAP encapsulation but the most frequent messages (connection management) are designed to be small enough to be single cell AAL-5 packets, fig. 3. The LLC/SNAP encapsulation was chosen to allow other protocols beside GSMP to be multiplexed onto the link by using a different "Ethertype" in the SNAP header. For example, while GSMP offers some simple network management features, the Simple Network Management Protocol (SNMP) will be required between the controller and switch to offer full-service network management. (While SNMP can be used to establish connections in an ATM switch it was considered far too heavyweight a protocol to satisfy the design goals of GSMP.) An adjacency protocol is used to synchronize state across the control link, to discover the identity of the entity at the far end of the link, and to detect when it changes. No GSMP messages other than the adjacency protocol may be sent across a link until adjacency has been established. Once established, five types of message may be sent: configuration, connection management, port management, statistics, and events.

The configuration messages are used by the controller to discover the capabilities of the ATM switch. Beyond name, rank, and serial number, each ATM switch port can report: the incoming VPI and VCI ranges it can support, its interface type and cell rate, its administrative and line status, and the number of priority levels it supports in its output queue. The current version of GSMP (RFC1987) assumes simple strict priority output queues of which any number of priority queues per port may be specified. (Queue structures other than output queueing may be mapped into this model.) The protocol will need to be extended to support the next generation of ATM queueing and scheduling hardware currently in development.

Traffic policing (usage parameter control) is also not supported in this version. (It is unlikely to be required in IP switching until RSVP signalling is more widely deployed and it will be rendered unnecessary by implementations with per-VC queueing and scheduling.) Once the configuration of the switch has been discovered, the controller can begin issuing connection management messages. These are the most common messages. They enable the controller to establish and remove connections across the switch. No distinction is made between unicast and multicast connections — the "Add Branch" and "Delete Branch" messages are used for both.

The first Add Branch message on a new incoming VCI defines a new unicast connection. The second Add Branch message on an existing incoming VCI converts the connection to a point-to-multipoint connection with two branches, etc. This was intentional as no distinction is made in IFMP. However, in hindsight, it would be better to give a hint if a multicast connection is being established as many switches use completely different data structures to implement unicast and multicast connections. A Delete Tree message is available to delete an entire multicast connection. A Move Branch message allows a single output branch of a multicast connection to be moved from one output port and VCI to another. The Move Branch message is used in the cut-through operation where an IP flow is moved from connectionless forwarding to direct switching.
CONCLUSION
The IP switch is an alternative architecture to the gigabit router for providing high speed routing. It uses low-level switching of flows (equivalent to cached routing decisions) and includes a cooperative protocol to allow explicit use and management of this cached information, on a link-by-link basis, throughout an IP switching network. There are a number of parameters that determine the performance of an IP switch. Some are determined by the switch designer; for example, the number of VCs supported by the switch and the per-packet processing time in the router. Others may be determined by the manager of the switch: the flow classifier and the flow deletion delay. Yet others are determined largely by the environment in which the switch operates; for example, the delay from the time a redirect message is sent until datagrams begin to arrive on the new VC.

I summarize all of our findings by making some specific recommendations for different environments. These are shown and assume that flow type 2 is used. As expected, our study shows that the switch designer should aim to support as many VCs as economically viable. Most ATM switches today support between 4096 and 65,536 VCs. Our results indicate that switches supporting at least 10,000 VCs will see acceptable performance with today's traffic. However, the volume and diversity of Internet traffic is growing rapidly. We predict that before long, more than 65,536 VCs will be required to provide adequate performance in the core of the Internet. Note that this is the case for flows of type 1 and flows of type 2. Our study also shows that a slower router will lead to more misordered datagrams and eventually instability of the IP Switch.

However, in all the environments we studied, we found that the router need only forward as few as 3,700 packets per second (assuming flow type 2). This is readily achievable today with low-cost general purpose computers. We found that the X/Y classifier works better than either the port or protocol classifiers. It is simple to select values for X and Y that lead to over 75% switched datagrams. When enough VCs are available, our recommended values are: X = 2 packets, and Y = 60 seconds. Note also that the X/Y classifier does not depend on well-known port or protocol numbers; it requires no modifications as different applications come into favor.

Our findings lead us to caution against using large flow deletion delays. These lead to unnecessary exhausting of VCs, and therefore reduce switching performance. We found that a value of 30 seconds suits all of the environments tested. Finally, our results indicate that the flow creation delay should be kept well below one second. In practice, this should be readily obtained — we expect the delay to be no larger than 20 ms. We now turn to another decision: should we use flow type 1 or flow type 2? Because the flow type 1 description is a superset of the flow type 2 description, using flow type 2 results in a lower VC usage and a higher switching percentage. This is reflected in our results. In all cases, flow type 2 results in better performance with lower VC usage. Why, then, would anyone use flow type 1? When using flow type 2, all packets from the same source/destination pair are lumped together in the same flow. This is certainly more efficient.

However, it does not allow the switch to distinguish different application flows, making it impossible to provide differing classes of service. In reality, we expect that most flows will be classified as type 2, with the network administrator selecting certain specific protocol or port values (i.e. specific high-priority applications) for which to use flow type 1.

It is clear that the volume of Internet traffic is growing exponentially. We predict that IP switches will soon need in excess of 64K VCs to perform well. As the traffic intensity and number of flows increase, it appears that the number of VCs required will also increase; perhaps to the point of overwhelming ATM switches. We can alleviate this problem by using less specific flow descriptions.

Using a flow specifier based on IP address prefixes (i.e. aggregated netids) rather than the full 32-bit address should allow multiple type-2 flows to map into one prefix-based flow. This would reduce the number of VCs required, but also require a modification to the IFMP specification. We have presented an overview of the protocols developed to support Ipsilon's IP switch implementation.

In an IP switch, all flows are classified. The flow classification process dynamically selects flows to be forwarded in the switch fabric while the remaining flows are forwarded hop-by-hop. This flow classification allows an IP switch to intrinsically support multicast, quality of service differentiation, simple firewall filtering, and complex policy-based routing decisions for each switched flow. These features can be difficult to support in a gigabit router with the fast forwarding path optimized for only destination address lookup. The forwarding engine in an IP switch is optimized for flow classification and for forwarding packets on those flows that are decided should not be cut-through the switch fabric.
ACKNOWLEDGEMENT
I express my gratitude to Mr. Harsimranjeet Singh, our course teacher, who gave me this opportunity to do the term paper on IP Switching, whose regular inspirations leads me to do all this work. Also I feel proud that I am a student of Lovely Professional University,

I am also very thankful to all the staff members and friends who encourage me to write on this topic.

Also I like to thank God and my parents who gave me the power to work hard.
REFERENCES
[1] C. Partridge, "A fifty gigabit per second IP router," Paper in preparation.

[2] G. Parulkar, D. C. Schmidt, J. S. Turner, "IP/ATM: A strategy for integrating IP with ATM," In SIGCOMM Symp. on Commun. Architectures and Protocols, Cambridge MA, Sep. 1995, page 9.

[3] H. Esaki, and K.-I. Nagami, M. Ohta, "High speed datagram delivery over Internet using ATM technology," Networld+Interop, Las Vegas, Mar. 1995, E12-1.

[4] P. Newman, T. Lyon, G. Minshall, "Flow labelled IP: A connectionless approach to ATM," Proc. IEEE Infocom, San Francisco, Mar. 1996, 1251-1260.

[5] D. Kachelmeyer, "A new router architecture for tomorrow's Internet," NetStar, Inc. http://www.netstar.com.

[6] T-B. Pei, C. Zukowski, "Putting routing tables in silicon," IEEE Network Mag., Jan. 1992, 42-50.

[7] C. Partridge, "Locality and route caches," NSF Workshop on Internet Statistics Measurement and Analysis, San Diego CA, Feb. 1996.

[8] Y. Katsube, K.-I. Nagami, and H. Esaki, "Router architecture extensions for ATM: Overview," IETF Internet Draft, draft-katsube-router-atm-overview-02.txt, Mar. 1996.

[9] Y. Goto, "Session Identity Notification Protocol (SINP)," IETF Internet Draft, draft-goto-sinp-02.txt, Jan. 1996.

[10] Y. Rekhter et al., "Tag switching architecture overview," IETF Internet Draft, draft-rfced-info-rekhter-00.txt, Sep. 1996.

[11] P. Newman et al., "Ipsilon's General Switch Management Protocol Specification Version 1.1," IETF RFC 1987, Aug. 1996.

[12] P. Newman et al., "Ipsilon Flow Management Protocol Specification for IPv4," IETF RFC 1953, May 1996.

[13] P. Newman et al., "Transmission of 