Hyper text transfer protocol

Abstract
REST first was depicted in the perspective of Hyper Text Transfer Protocol however is not restricted to just protocol but the RESTful architectures applied to the application layer protocols giving a varied variety to application on transport significant representational state. The RESTful applications increase the use of first only present applications and lessen the additional application characteristics over it.

The following research paper provides an insight on REST. Here I first explain the concept of REST, then why do we need to use the REST?, also its constraints .Then I define the principles as well as goals of the REST, how REST is used in web services and finally give the advantages and disadvantages in REST with a conclusion.
Introduction:
Usually, to learn about REST means one is certainly going to think how relevant the notion really is to a known specific situation. There is a ongoing argument about the correct approach to employ application to application communication. The present convention is clearly centric on web development based on SOAP, WS specification and WSDL but a little but vocal marginal say that there is enhanced way which is REST(Representational State Transfer).Current development show that SOAP and all these methods do not envelop all the aspects of web service and web development. There is one substitute which is REST.

The REST building approach was developed along with HTTP 1.1 protocol build present design of HTTP. The biggest recognized system in compliance with the REST style of architecture is WWW.As a matter of fact REST can be believed as post hoc portrayal of the qualities of the web those made it successful. REST demonstrates in what way the webs architecture surfaced by differentiating and limiting the macro-communications of the 4 components of the web which are origin servers, proxies , gateways and the clients with no confines on the individual members. By itself REST fundamentally preside the correct manner of the individuals on the world wide web.

The term REST (Representational state transfer ) was launched and described by Roy Fielding in his doctorate dissertation. Roy Fielding is one of the authors of Hyper Text Transfer Protocol specification versions 1,1.1.
REST
REST is Representational State Transfer invented by Roy Fielding. The REST architectural approach, build as a conceptual model of web development to direct the redesign and description of the URIs and HTTP. The REST technique is a notion of architectural building blocks inside a distributed system. The important characteristics are the state and nature of the data constituents. REST recognizes six data constituents which are resource, resource metadata, resource identifier, representation, control data and representation metadata.
Concept
The architectural style of REST is basically includes clients and servers. Clients send the request to the servers. Servers' process the request and give back suitable replies to the client. The request and replies are developed around the transport of representation of resources. A resource could be some logical and significant concept which may be addressed. A representation of resource is basically a text article that sums up the present or proposed state of the resource. At specific time the client might be changing over between the states of the application or' at rest '.In the rest state the client is capable of communicating with the user, but generates no load and takes in no per client storage on the network.

The client starts transferring requests when its prepared for changing over to new state. While more than one request are pending, the client is considered to be in changing over states. The application state representation consists of links that might be exercised next time when the client decides to begin a new transition.
The Basics:
REST is certainly an architectural approach and not a specification or standard which is developed on pre existing standards by W3C as HTTP or URI and Resource Description Format. Accessing the resources is the main focus of REST.
Resource: It is basically something recognized by the Uniform Resource Identifier and can be fetched; here it is not the resource which is fetched on the contrary the representation of the resource.
Representation: The representation can be a document may be text or some other format or may be some medial like video and audio file. Both the representation and resource are not same they are two different things. Resource is that which stays outside the web which can be any physical object for example the like the present weather. For a particular resource there can be several digital representations.
State: The HTTP communication between objects is client-server pattern where state is passed to the caller. The state is preserved by the client and makes sure that every request from client to server consists of all the data which is crucial to comprehend the request.
Transfer: Uniform Interface is presented by HTTP and URI between client and server during which resource representation can be transmitted. Method calls are used for transfer thereby supporting OOPS approach. There are eight methods offered by HTTP.HTTP is made on several nouns which are URI's. The verbs are HTTP methods. The often used methods are none other than GET and POST. Combining the GET, POST, PUT and DELETE we get the basic interface for the client to retrieve, create, update and delete the information on the server system which forms the CRUD system.
Why do we use REST?
This is a very crucial question to ask when developing rails application using the model view control design pattern .Is there any space available for more model enhancement in ruby on rails development. These things will get clear as follows
Well defined URLs: In REST the URLs mostly show the resource and not functions or actions. URLs have the same layout the primary is controller and later comes the id of the cited resource. HTTP verbs are used and the handling does not depend on the URLs.
Dissimilar response representation: The REST controllers are designed in such a manner that the actions are processed in dissimilar formats. It left on the client to decide the same functions can execute XML, RSS, HTML or any other prescribed layout easily and efficiently.
Smaller code: Since more than one client actions can be executed thereby saving lot of duplication of code hence less code is required.
CRUD style controllers: The resource and the controller combine concurrently into one element and any change is resource is directly related to the relevant controller.
Lucid application model: The model developed is very straightforward conceptually easy to understand and sustainable design.
Key principles of Rest
There are about twelve important principles in the REST. They are as follows
1. Anything which can be recognized is a resource.

2. Each and every resource has a URI.

3. URI is obscure and does not show any particulars of its realizations.

4. GET procedures are without any undesirable effects.

5. Those requests which do not show undesirable effects should employ GET.

6. Every communication done is without state.

7. Information and meta-info representation are recorded.

8. The data is obtainable in different formats.

9. The illustration consists of links to other resources.

10. Record and publicize once service API.

11. Utilize the accessible standards and technology.

12. Filter and expand structural design norms and applications.
Constraints in REST
The REST architectural approach depicts the following six restrictions which are as follows

Client-Server: Uniform interface detach the client from the server. The detachment meaning the clients does not deal with the database and is inside the each server which client code is more moveable. Servers do not relate to state and UI thereby making it scalable. So provided that the user interfaced is not changed the clients and servers may be developed or altered independently.

Without State: There is no client context saved on the server amid requests. The entire request from the client contains all the information needed to service the request. It makes the servers more dependable and good for monitoring.

Cacheable: In the Internet many clients are caching the responses which can be both openly and internally, describe themselves as cacheable or avoid clients from using the state. Sound managed cashing fully or partially removes client server communication thereby improving expandability and performance.

Encrusted system: The client basically is not capable ob telling if its linked with the server end or partially .Here load balancing can be used to better to better the systems if connected partially as well as sharing proxies.

Code when required: Here the server can take the role of the functions of the client by shifting the logic and thereby performing it when required. This is visible when using client side java script and some components of Java applets. The code when required is optional.

Uniform Interface: Here the clients and the server have uniform interface which makes things easier and makes the architecture good an efficient.

Defiance of any of the above rules the system cannot be said as RESTful.
Restful web services
It can be also said to be as Restful API is straightforward web service which use the prominent REST principles and for Hyper Text Transfer Protocol for communication. It can be imagined as a compilation of resources. It mainly covers three features

The URI look like this example which is central http://tunes.com/resources/.

The MIME kind of the info accepted for the web service is YAML JASON and XML or other suitable kind.
Important Goals in REST
1. Improved efficiency by increased communication between the components.

2. Making the interfaces as much common and universal as one can.

3. The components can be set up or executed on their own without relying on other components.

4. There should be transitional components for increasing efficiency and speed to reduce lag between communications of other components as well as instill security for making the system sound.
REST accomplishes the goals by doing the following things
· Resource is an element of recognition.

· Resource is operated via transfer of the representations.

· Resource uses general way of following communication rules and norms.

· The message passing its self depictive.

· The function status is driven by the hypermedia.
Advantages of REST
1. Rest is very well recorded, it is well recognized and the its utilization is increasing day by day.

2. Its more kind of resource oriented than kind of method or function oriented which is good.

3. If specified a URI anybody knows how to use it.

4. It's just not a protocol which is above other protocol and above another one.

5. The reply payload is certainly of any representation or layout, it doesn't matter.

6. The use of REST provides good security model specific methods to specific URIs can simply be blocked by configuring the firewall not like other formats like XML on HTTP messaging.

7. REST logic is certainly correct understandable, straightforward shows what one has thus its rational add-on to the web.
Downfalls of REST
1. Although REST can be made employed for CRUD however not for actual business sense:
It seems many are hardcore REST fans deny any downfalls but when one has create , update delete, read complex application semantics cannot be shown. The GET, POST, DELETE and PUT is not having 1:1 mapping with CRUD functions of the database.
2. No prescribed convention and no description language:
In REST there is no given or prescribed description language that would show the procedure, the designation, the input and output constrains. For example REST can be employed on Ruby on Rails while WSDL can be used in Web Services.
3. REST just runs along with HTTP it's not protocol independent:
Basically one cannot call Hyper Text Transfer Protocol as not a fully transport protocol but a application protocol also using too much data hiding is not good way. Mostly many of the technologies are been put in the single abstraction layer which may cause problems.
4. REST does not have provision for transactions:
When it come to transactions it seems to go in a general way like the ACID properties , not only in http but also in web services it interacts with database but mainly here one is most probably generates the transactions clearly for oneself except if its running in EJB container.
5. REST is not dependable:
It been said a lot that WS reliable messaging so it does not match with RESTful HTTP where it difficult to be applied where dependability is a problem. On needs to know whether the message was delivered or not .Also one can resent the message but for that one needs to know if receiver can handle replicas. One solution is to change the reliability problem into application design.
6. No provision for Pub/Sub model:
REST mostly works good with client server model where there is mostly client and server interaction where as in pub/sub concerned party calls for a specific category on data and gets notifies each time something new is comes. Here the examples are RSS and atom syndication.
7. Lack of tools:
There are very less tools available for development of RESTful HTTP.I can say now slowly new tools are been put in the market but still not as much as other frameworks have support.
Conclusion
So looking at the concept of REST it's fairly very easy to understand, the principles are fine same goes with goals which are pretty much straight forward. Even though it has some constraints and disadvantages but those can be improved and found a solution for. The advantages are really great. I am not saying that we have to use REST everywhere but we can have Hybrid solutions.

It's pretty fine to develop REST based models and controllers developing them from start as the benefits are obvious as clear architecture , fewer code and more than one client ability.
References:
1. Practical Rails on REST 2 projects by Ben Scofield

2. Putting REST on Rails by Dan kubb.

3. http://www.wikipedia.org/

4. Restful web services by Leonard Richardson and Sam Ruby.

5. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

