Grid computing with XML web services

Abstract
We propose the new idea of using XML-based web services as an underlying infrastructure technology that can make grid computing more accessible to the general public. We demonstrate this idea by presenting Bayanihan Computing .NET, a generic grid computing framework based on, but not limited to, Microsoft's .NET web services infrastructure. Bayanihan Computing .NET shows how web services can be used to implement volunteer computing systems that harness the power of idle computers on the Internet. More significantly, Bayanihan Computing .NET also demonstrates how web services can be used to provide computational web services that hide the use of volunteer computing networks, supercomputers, and any grid computing resources in general, behind simple "web methods" that ordinary programmers can call in their programs just as they would a simple sequential method. The ease-of-use of such computational web services, together with the emerging ubiquitous support for them from key industry players, sets computational web services apart from existing grid technologies today, and offers to bring the benefits of grid technology to a much wider base of users than ever before.
Introduction
The recent release of frameworks and standards for XML Web Services from key industry players such as Microsoft, IBM, and Sun, promises to open a new era in distributed computing. In essence, XML Web Services are a new way of offering remote procedure call (RPC) functionality, similar to those offered by previous "distributed computing" technologies such as CORBA, RMI, andDCOM . What is new in XML Web Services is that: (1) they make use of text-based XML documents as the format of data transfer between systems, (2) data is transfered between systems using the standard web protocol and port (i.e., HTTP on port 80), and (3) there is widespread industry support for common standards and protocols. While these new features seem to represent only a superficial change (i.e., underneath these, web services are simply just RPC - an old idea), the great improvement in interoperability, ease-of-use, and ubiquitous support, that these new standards and protocols bring, offer to make a big difference. Much like HTTP and HTML changed the world even though they seemed like a simple incremental improvement over existing technologies at the time they were conceived, XML Web Services offer to open up a new world of possibilities in computing today.

Already, key players in industry have been touting XML Web Services as a way for businesses to improve their backend systems by allowing them to structure their systems as interacting information servers, and even allowing them to interact with other businesses offering other web services. In this paper, we propose and examine a new idea: using XML Web Services not only for business systems but for grid computing as well. That is, we propose and demonstrate that XMLWeb Services can be used as a way to share not only information, but processing power, and - in general - computing resources as well. We begin this paper with a short background on XML Web Services and grid computing, and discuss how they can be used together. We then demonstrate our ideas by presenting a prototype system called Bayanihan Computing .NET, which has been implemented on, but is not limited to, Microsoft's .NET infrastructure. Bayanihan Computing .NET demonstrates how XML Web Services can be used to achieve two of the most fundamental goals in grid computing: (1) harnessing computing resources, and (2) making these available through an easy-to-use interface. Specifically, Bayanihan Computing .NET shows how XML web services can be used to implement a volunteer computing system [10] that harnesses the idle time of ordinary users' computers on the Internet, and make these computing resources available through easy-to-use computational web services that ordinary programmers can call in their programs just as they would a simple sequential method. The ease-of-use of such computational web services, together with the emerging ubiquitous support for them from key industry players, sets computational web services apart from existing grid technologies today, and offer to bring the benefits of grid technology to a much wider base of users than ever before. We present our results, compare it with related works, and conclude by discussing the implications of these results, and the many possibilities they create for the future.
Background and Overview

XML Web Services
XML Web Services technology allows organizations, businesses, and even individuals who want to offer information or computing capability to others to publish web services on the Web. These web services are composed of web methods that other users on the Internet (i.e., either end users themselves, or more commonly, other businesses or organizations serving as front-ends or middle-men for other users) can call by sending requests over the standard web port (i.e., port 80), passing and receiving data in the form of XML documents. The key to the successful deployment of XML Web Services is the use of common protocols that have gained widespread industry support. The most basic of these are SOAP, WSDL, and UDDI.1 SOAP, the Simple Object Access Protocol, specifies how to represent data objects as XML documents. It also specifies how to invoke remote web methods that receives parameters and returns values in this XML format. WSDL, the Web Services Description Language, provides a standard way for service providers to describe the web services and methods that they are making available. Basically, WSDL specifies what a web service can do, where it resides, and how to invoke it. UDDI, the Universal Description, Discovery, and Integration Service, provides dynamic mechanisms that allow clients to find web services of particular providers or companies ("white pages" style), or find providers that offer web services that they need ("yellow pages" style). In addition to these key protocols, other protocols are being proposed and developed to provide for other needs such as security and authentication (e.g., XKMS), support for database-style transactions (e.g., XLANG and XAML), advertisement and discovery (e.g., ADS), file access and management (e.g., XFS), and others.

The key advantages of XML Web Services over previous incarnations of RPC are interoperability, and ubiquity. Because they use text-based data representations, web services can be used by anyone on the Internet regardless of their underlying computing hardware. At the same time, the use of HTTP and port 80 makes it easy for more users and service providers to take advantage of XML Web Services. For example, users behind firewalls can now take advantage of RPC-like services much more easily than other technologies such as CORBA, RMI, and DCOM allowed before. Similarly, service providers can now set up services much more easily because they do not need to worry about making other ports available and setting up services to use these ports. All these give XML Web Services the potential to be as ubiquitous as the HTTP and HTML - that is, potentially, XMLweb services can exist and be used anywhere where there is a web site. What makes XML Web Services even more attractive is that its widespread support from industry offers to make this potential a reality sooner than one might think. Recently, Microsoft, IBM, and Sun have released new frameworks that make writing, publishing, and using XML Web Services very accessible and easy even for average programmers. Microsoft's .NET framework, for example, allows users to write and in a variety of languages, and publish web services by simply posting them on a web server, almost as easily as posting an HTML file. Furthermore, they even allow web service users to find and use web methods from web services through a simple drag-and-drop feature, and have designed their programming environment to make using a web method as easy as, and almost indistinguishable from, using a local method. Because of all these advantages, XML Web Services opens up a whole world of possibilities in computer software today, and it is now fast becoming the hottest topic in mainstream computer software industry today.
Grid Computing
Grid computing is a rapidly emerging new form of distributed computing wherein the vision is to construct a "computational grid" which would distribute computational resources much like an electric power grid distributes electric power. In this vision, the Grid would give end users a simple interface that would allow them to access computational resources, such as processing power and data, by simply "plugging in" to the Grid, much like the national power grid allows ordinary people to get electric power by plugging their appliances into their wall sockets. At the same time, the Grid would provide the infrastructure that would allow these resources to be taken from many different organizations, big or small, just as an electric power grid harnesses the resources of many different power plants, whether privately or publicly owned, in a coordinated and fault-tolerant way in order to provide a steady, reliable, and ubiquitous source of electric power. In recent years, there has been an intense burst of growth in the number of grid and grid-related research and development. Today, there are already many large grid computing projects, including many generic grid technology research projects from the academic research community (e.g., Globus) and from industry (e.g., Gridware from Sun), government-sponsored infrastructure projects (e.g., DOE Science Grid, NASA Information Power Grid, EuroGrid, etc.), application- or domain-specific grids (e.g., Gr d Physics Network, Particle Physics Data Grid, theDREAM Project, etc.), and other projects. (See [3], [4] for links to these and other projects.) At the same time, there is also a rapidly growing number of volunteer computing systems (also known as internet computing or global computing systems), which seek to harness the power of idle computers volunteered by ordinary users on the Internet. The bulk of these have been inspired by the success of SETI@home [11], and now include similarly "altruistic" or "philantrophic" ones, where volunteers do not get paid (e.g., Folding@home, Compute-against-Cancer, Fight AIDS@home, etc.), as well as commercial ones, where volunteers get paid to do computation for paying corporate clients (e.g., Entropia, Popular Power, Parabon, United Devices, etc.). (See [9] for a good list of current projects.) While these projects have been very successful, however, the vision of the ubiquitous Grid is still far from becoming reality. To date, grid technologies, although usable, are still not as understandable and accessible to the average programmer as one would desire. There is still a steep learning curve involved, and in many cases, there are also system requirements (e.g., hardware, software, and OS requirements, making particular ports available, installing accounts on several machines, etc.) that make it hard for average programmers and users to access the Grid, whether as end-users or as resource providers. Even today's volunteer computing systems, which (unlike full-blown grid systems) succeed in making it easy for users to provide computational resources, fall short of realizing the full grid vision, since they do not supply an easy way for programmers to use this power for their own purposes. In particular, most volunteer computing systems today are application-specific systems limited to a single application or domain (e.g., searching for radio signals from extraterrestrial lifeforms). Generic systems that support different applications exist, such the commercial systems mentioned above, but typically require the programmer to learn a specialized API and parallel programming techniques. For these reasons, the benefits of grid computing have only been enjoyed by a small fraction of all the people whom it could potentially benefit.
The Idea: Grid Computing with XML Web Services
This is where XML Web Services come in. Although grid computing and XML Web Services were developed independently and with different goals in mind (i.e., grid computing has been developed by the academic community with sharing computational power as the initial goal, while XML web services were developed by industry players for applications in business systems), a closer look at the ideas and mechanisms behind them show that they share a lot in common. In fact, it is not hard to see that at a fundamental level, web services address the same problem that grid computing seeks to address - that of "coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations" [2]. By providing web services and methods that other users call to get data or perform computations, XML web service providers are in effect analogous to the "power plants" of the grid vision. At the same time, the use of XML, SOAP, WSDL, and UDDI achieve the goal of letting end users easily find available power "sockets" and plug into them. Thus we propose a new idea: use XML Web Services for grid computing - either as the basis for a new grid computing system, or at least as an intergrid protocol [2] for existing grid systems. Since the goals of XML Web Services and grid computing are so similar, we find that both of them actually share the same set of key problems, including issues such as authentication, authorization, resource access, resource discovery, and others [2]. The idea is thus to avoid reinventing the wheel, and to share results between the two fields. In particular, we propose that the grid computing community use the solutions already provided by XML Web Services to solve problems in grid computing - e.g., using XML and SOAP for data transfer and resource access, WSDL and UDDI for resource description and discovery, XKMS (or whatever the accepted standard turns out to be) for authentication, etc. Using these protocols would have the critical advantage of present-day widespread industry support, which implies greater ease-of-use, and true ubiquity. In other words, it can be the critical factor that allows grid computing to change from something for only an elite few to something that can benefit all computer users.
Proof of Concept: Bayanihan Computing .NET
To demonstrate the use of XML Web Services for grid computing, we have developed Bayanihan Computing .NET, a generic volunteer computing framework implemented on, but not limited to, Microsoft's .NET infrastructure [8]. Although not (yet) a full-blown grid computing system, Bayanihan Computing .NET is meant to be a simple but powerful proof-of-concept example. Bayanihan Computing .NET demonstrates two main ideas: (1) using XML Web Services to implement volunteer computing, and (2) hiding the complexity of accessing parallel processing resources behind easy-to-use computational web services. The first of these ideas, volunteer computing, demonstrates the use of XML Web Services to achieve the grid goal of harnessing resources in general. One significant twist here, compared to mainstream grid technologies is that we are able to harness the processing power of ordinary users without any technical knowledge. The second main idea demonstrated here, computational web services, demonstrates how XML Web Services can make it easy to use grid resources in general. This is actually a more significant and critical idea than volunteer computing. The idea of computational web services as a façade for parallel computing resources (and complex computing resources in general), makes it possible not only for end users to gain easy access to supercomputing power, but alsofor grid resource providers themselves to be able to share resources more easily by providing computational web services that they can call on each other. In the following sections, we present Bayanihan Computing .NET in more detail, describing how we have implemented each of these two ideas, and presenting our results.
Volunteer Computing with Web Services
Bayanihan Computing .NET implements the same idea of volunteer computing promoted by our original Bayanihan project at MIT [10] - i.e., to allow ordinary users on the Internet to volunteer their idle computers' processing power towards solving computationally intensive tasks. In this section, we show how we have implemented this idea and present our results.
Implementation
A Bayanihan Computing .NET volunteer computing system is composed of computational clients and volunteers (or workers) interacting with a PoolService web service, as shown in Fig. 1.
Computational Clients
We define the term computational client, in general, to mean an application that desires to use a high-performance computing resource to solve a particular problem. In a basic Bayanihan Computing .NET volunteer computing system (without the computational web services discussed in Sect. 4), a computational client interacts directly with the PoolService, submitting tasks to it and receiving results. Specifically, to request a computation to be done in parallel, a computational client would: (1) first call the createPool() web method of the PoolService to create a TaskPool object that will be used to contain the list of tasks to be run in parallel, (2) partition the work to be done into independent Task objects, and call the addWork() web method to send each task to the PoolService and add it to the pool, (3) repeatedly call getResults() to get results for each of the tasks added to the pool, and finally, (4) delete the pool by calling the deletePool() method when all the results have been received. It can repeat this process for each batch of tasks to be done in parallel.
Volunteer Workers
A volunteer worker application (or simply a volunteer or worker application) is a program run by a user who wants to offer the idle time of his or her machine to others (either for free or for pay). In Bayanihan Computing .NET, the worker application is a simple .exe file that Windows users can download from the Web and run on their machines. To start it, a user selects a PoolService to connect to, and logs on to it, providing a username and password. The application then runs in the background, with low priority, repeatedly calling the getTask() web method to receive a Task object (if any are available) from the PoolService. Whenever the worker application receives a Task object, it executes it locally on the volunteer machine by calling the object's doWork() method, and then returns the result to the PoolService by calling the putResult() web method. (As discussed in Sect. 3.1.4, the worker application is generic - i.e., it supports different types of Task objects with different doWork() methods.)
The Pool Service
The PoolService acts as a processing power "broker" between computational clients and volunteerworkers. It keeps a list of TaskPool objects, each of which represents an independent "batch" of work meant to be done in parallel. These batches can come from different computational clients with different applications. Currently, the PoolService uses eager scheduling to achieve a simple form of adaptive parallelism that provides dynamic load balancing and fault-tolerance in the face of workers that have different speeds, and that can arbitrarily join, leave, or crash [10]. In the future, we can also support other fault-tolerance and sabotage-tolerance techniques (against malicious volunteers) that we have previously developed [10], such as voting, spot-checking, and credibility-based fault-tolerance.
Generic Application Support
Unlike many volunteer computing systems today that only support one application, Bayanihan Computing .NET is a generic framework that allows programmers to write a variety of parallel applications. When writing a new application, a programmer needs to define a new concrete subclass of the Task abstract class. This class should contain fields representing the parameters of the task, and should define a doWork() class that performs the computation, and returns an object-type (i.e., any non-primitive type) result object. For example, if a programmer wants to do parallel 3D rendering, she might define a RenderTask object whose fields would include the scene to be rendered and the coordinates of the pixels to be rendered, and whose doWork() method would perform raytracing on that scene, and return an array of bytes corresponding to the pixel colors. After defining the classes, a programmer compiles the task class and other application-specific code into an assembly in the form of a DLL file, say RenderLib.DLL. (Note that our current implementation is Windows-based.) This assembly file is then uploaded to the PoolService, which saves it in a repository. Obviously, for security reasons and to avoid the danger of running viruses and other destructive code on volunteer machines, only trusted people should be allowed to upload assemblies to the PoolService. Currently, we implement this by requiring users to log-in and checking their permissions before allowing them to upload a file. When a computational client calls createPool() to create a new TaskPool for new batch of work, the client specifies the name of the assembly that will be associated with the TaskPool. Thus, when a worker gets work from this TaskPool, the worker can check to see if it already has the assembly, and if not, automatically download a copy of the assembly onto its local drive. This assembly then allows the worker application to deserialize and execute the concrete Task object (e.g., RenderTask) on the local machine.
Results

Applications
Bayanihan Computing .NET's generic application support has allowed us to implement a number of example applications that demonstrate the power of volunteer computing using XMLWeb Services. Currently, we have implemented three main demonstration programs: a Mandelbrot application inspired by our original Java-based Mandelbrot demo [10], a ray-tracing application using code adapted from Intel's peer-to-peer demo for .NET [15], and a brute-force exhaustive search travelling salesperson (TSP) application. Compared to other volunteer computing applications (including those from the original Java-based Bayanihan), these applications have the advantage of doing all their communications via XML and HTTP on port 80. For one, this allows volunteers and clients to be behind firewalls, thus increasing the potential volunteer and user base of our applications. It also allows disconnected operation (unlike our Java-based version, which requires volunteers to maintain an open socket connect to the server). This not only allows volunteers more freedom, but also increases scalability by allowing the servers to handle more volunteers and clients at the same time. Finally, it also allows more interoperability. That is, clients and workers need not be written using the same platform. Thus, although our volunteer computing components currently use the .NET runtime, in the future, it should be possible to write worker and client applications using other platforms and languages, such as Java.
Performance
The performance of the TSP application, shown in Fig. 2, demonstrates that we can get good speedups for coarsegrain computations with small task and result objects. The raytracing application, where the result objects are larger, similarly shows good speedup relative to the 1-worker case where the server and the worker are on different machines, as show in Fig. 3.

However, if we compare the speeds to a local computation without the need for communication, we find that we only get about 50% efficiency. We are still determining exactly why this happens, but since, as shown in Fig. 3, the total delay shrinks inversely with the number of workers, we know that the delay occurs on the worker's side, and is not a sequential bottleneck. We suspect that the delay is due to an inefficiency in converting the result objects into XML form. If this is true, then this could represent a disadvantage of using XML as a data format over using direct binary data, and deserves further study. Even if this is the case, however, we believe that this problem can be overcome with more efficient serializing code. Moreover, even if it cannot be corrected, it should still be possible to get good speedups in more realistic applications, where the computation time would be longer compared to the overhead. (Note that in this example, the whole scene took only 20 s total to render the whole scene sequentially. In real applications, we would typically do problems which take in the order of minutes, hours, or more to complete.)
Computational Web Services

The Idea
Even more significantly than showing that XML Web Services can be used for volunteer computing, Bayanihan Computing .NET shows that XML Web Services can also be used for computational web services. The idea behind computational web services is to (1) offer simple web methods that computation clients can call to perform applicationspecific computations on their own data, and then (2) use a parallel computing resources (such as a volunteer computing network, a supercomputer, or even a collection of parallel systems) behind-the-scenes to perform the computation much faster than possible on a single machine. Figure 4 shows an example of a computational web service hiding a volunteer computing system.

Here, instead of having the computation client connect directly to the PoolService, we have it connect to a RayTrace web service, which offers a Render() web method that takes a scene object as a parameter, and returns a bitmap (or an integer array) containing the pixels for the rendered scene. In this way, we shield the programmer of the computation client from having to parallelize the rendering task. From the client's point-of-view, all that is needed is to call the Render() web method and receive the finished bitmap. Behind-the-scenes, it is the RayTrace service which parallelizes the computation and lets it run on the volunteer computing system by calling the createPool(), addWork(), getResult(), and deletePool() methods on the PoolService accordingly. Note that computational web services are not limited to being used with volunteer computing systems. They can hide any high-performance processing resource in general - whether it be a supercomputer, a cluster, or even the Grid as a whole. The key idea in computational web services is to hide these resources behind a web method whose syntax is almost the same as that of a local method. By doing so, we allow even average programmers to use parallel computing resources without even knowing how they work. From their point-of-view, they are simply calling methods to perform computation. The only difference is that these methods run thousands or millions of times faster than ordinary ones. Computational web services have other advantages. For one, since the computation client application does not need to do the hard work of partitioning the work and colleting results, it can now be a very "thin" client. Furthermore, since data is passed to and from the web service as XML, and no executable code is passed between the client and the web service, client applications running on any platform can make use of the service as long as they can produce and parse the necessary XML documents. This means that computational web services can be accessed from any device - including handheld PDAs, and potentially even cellular phones. In this way, they can quite literally bring supercomputing power to the hands of ordinary users.

MandelWebService mandelService

= new MandelWebService();

byte[][] result

= mandelService.computeMandel(

2, 2, -2, -2, 400, 400, 2048);

displayResult(result);
Implementation and Results
To demonstrate the power of computational web services, we implemented computational web service frontends for the Mandelbrot and TSP volunteer computing applications in Sect. 3.2.1. (We are currently implementing one for the ray-tracing application as well.) The Mandelbrot computational web service takes the coordinates of the area to be plotted, the size of the desired image in pixels, and the maximum depth, and then returns a 2D array of bytes (serialized into an XML document containing an array of Base64 strings) corresponding to the colors of the pixels in that area. The TSP web service takes a 2D array of vertex-vertex distances and the index of the starting vertex, and returns an array corresponding to the tour sequence with the minimum total distance. To demonstrate the ease-of-use, flexibility, and interoperability of these web services, we wrote a number of computation clients for these services using different languages and platforms, including C#, Visual Basic, and Java. As Fig. 5 shows, invoking the Mandelbrot service and using its result is easy enough for even average programmers to do. At present, we are also planning a computational client that can access the Mandelbrot and TSP web services from a PocketPC. However, we have not been able to do so yet because of deficiencies in the PocketSOAP development kit that we currently have. We expect this problem to be fixed when the new version becomes available. Meanwhile, we have been able to support PDAs via a web-based an intermediary grid portal [13], as shown in Fig. 6. This grid portal is a web form application that receives parameters from the user through a regular HTML form, and then passes these parameters to the Mandelbrot web service. Upon receiving the result, the portal converts it into a GIF file, and then presents this file to the user in a new HTML page. Since the user interfrace to this application is a standard HTML web form, it can easily be accessed from any device that can browse the web. We have successfully tested this on a Compaq iPAQ PocketPC, and through it, have been able to produce Mandelbrot images on the iPAQ using the processing power of several networked PCs.

Using a similar technique, we have also made a textbased grid portal that uses the TSP web service. In this application, a set of cities and the distances between them are stored on the server. The web form allows a user to use a web browser to select a subset of these cities and get the minimum-distance tour covering them. The textbased interface should make it possible to access this grid portal from a WAP-enabled phone.2 This makes it possible, for example, for a real travelling salesperson to request intineraries using his WAP phone. Unknown to him, his itinerary can actually be computed behind-the-scenes by a volunteer computing network or a even a supercomputer. Thus, we achieve the ultimate form of easy-to-use and ubiquitous Grid access - supercomputing power from a handheld mobile device.3
Taking It Further
The potential benefits and applications of computational web services do not stop here. There are many more possibilities that have yet to be implemented. One possible extension of the idea of computational web services is to start charging money for the use of such services (and also possibly paying money to volunteers in a volunteer network). Thus, we can forsee, for example, computational service companies offering rendering services to media companies who need to have 3D scenes rendered. Although commercial volunteer computing companies such as Entropia, Parabon, and United Devices already offer such services today, XML computational web services would of- fer the advantage of making taking advantage of this resource significantly easier than before. Another, more intriguing and promising possibility, from the technical point-of-view, is to use computational web services not only between service providers and computational clients, but also between service providers themselves, as shown in Fig. 7. By allowing service providers to employ each other's services through simple web method calls, computational web services make sharing resources on the Grid easy, and open up many possibilities. As a simple example, if a RayTrace server receives a large number of scenes to render from its clients, it can search for other RayTrace servers and call their Render() method to have them do part of the work (possibly paying them for their services, in a sort of subcontracting agreement). A web service can also employ different types of other web services. For example, a ProteinRendering web service may call a ProteinFolding web service to determine a protein's structure, and then call a RayTrace web service to render the protein's image. In the end, as with any technology that makes connecting different systems very easy, the possibilities stemming from combining computational web services are endless.
Related Work
As XML Web Services are very new, there is little prior work in this field. As far as we know, the first (and so far, the only other) attempt to do grid computing using XML Web Services was done by Intel through their peer-to-peer cycle sharing demo [15]. This application demonstrated a peerto- peer system where each worker publishes a web service that allows the computational client (called the foreman) to request it to start getting and doing tasks. This demo, however, has some limitations. First, it is not generic. Currently, although most of the components are designed to be generic the system as-is is limited to doing raytracing computations. Second, it is not a volunteer computing system in the sense that it does not allow ordinary users to contribute processing power. Their system requires worker machines to publish a web service, and therefore does not work over firewalls, and can require installing additional software (e.g., IIS). Third, their system requires the computational client to select and activate the workers by itself, and thus puts the burden of load balancing on the foreman. In contrast, our system hides the load balancing and fault-tolerance details from the foreman. In summary, Bayanihan Computing .NET is the first grid computing system using XML Services that supports volunteer computing and generic applications. As far as we know, we are also the first to propose the idea of computational web services, and the first to implement it. Killdara Corporation has published a white paper describing its Vitiris web services platform, and claiming that through it, "web services meets grid computing" [7]. While their paper has interesting ideas, however, a closer look would show that the web services they propose to support are simple web services, and are not meant to be facades for supercomputing resources. In terms of providing such facades, the closest work would be the ongoing work on grid portals (e.g., [13]) - web form applications that give users a web-based interface for running specific applications on the Grid, much like the web form applications we used for PDA and WAP access in Sect. 4.2. These grid portals, however, are different from computational web services in that they are meant to be used by end-users directly. Thus, they are not as powerful as computational web services, which are meant to be called by other programs, and thus can be used not only by end-users, but between service providers as well, as described in Sect. 4.3.
Conclusion: A Whole New World
In this paper, we have demonstrated the great advantages of using XML Web Services for grid computing, and have given a glimpse of its even more vast potentials. This is just the beginning, however, and there is also a lot of work still to be done. While Bayanihan Computing .NET demonstrates the basic ideas, many details still need to be worked out before we can implement the larger ideas. Possible next steps include, among others: (1) investigating the use of UDDI and UDDI-crawler protocols such as ADS [14] to allow clients to find the services that they need, and allow service providers to find other web services that they can subcontract, (2) investigating the performance problem identified in Sect. 3.2.2 and either eliminating the overhead, if possible, or otherwise, determining the granularity required to make the effect of this overhead acceptably small, (3) finding good protocols for security and authentication (one of the shortcomings of previous web-based protocols, as noted in [2]), and (4) developing protocols to address the many other issues in grid computing. In the end, we believe that it will be worth it for grid computing researchers to start working together on a longterm project (possibly called "XMLGrid") to implement a Grid framework based on XML web services and protocols. Through such a project we can not only bring the advantages of XML web services into grid computing, but also share the results of grid computing research with the "real world" XML web service community as well. Thus, we can start a merging of efforts, that can eventually lead to a whole new world where the Grid is a part of the everyday life of all computer users.
References
1. I. Foster, and C. Kesselman (Eds). The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufmann, 1999.

2. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. To appear: Intl. J. Supercomputer Applications, 2001.

3. Global Grid Forum. Related Initiatives and Projects. http://www.gridforum.org/info/Initiatives.html

4. Grid Computing Info Centre. http://www.gridcomputing.com/

