Distributed System?
A distributed system consists of a collection of autonomous computers, connected through a network and distribution middleware, which enables computers to coordinate their activities and to share the resources of the system, so that users perceive the system as a single, integrated computing facility.

In other words, a distributed system is one in which hardware or software components located at networked computers communicate and coordinate their actions only by passing messages. (Coulouris G., Distributed systems: concepts and design, fourth edition, p.2)

Resources in a distributed system are physically encapsulated within computers and can only be accessed from other computers by communication. For effective sharing, each resource must be managed by a program that offers a communication interface enabling the resource to be accessed and updated reliably and consistently. (Coulouris G., Distributed systems: concepts and design, fourth edition, p.2)

An architectural model of a distributed system is concerned with the placement of its parts and the relationships between them. Examples include the client-server model and the peer-to-peer model. The client-server model can be modified by:

-the partition of data or replication at cooperating servers;

-the caching of data by proxy servers and clients;

-the use of mobile code and mobile agents

-the requirement to add and remove mobile devices

Java Server Faces (JSF) technology is an application framework for building Web-based user interfaces. JSF provides Web application lifecycle management through a controller servlet along with a rich component model complete with event handling and component rendering.

In a nutshell, JSF eases Web-based application development because it:

-Lets us create user interfaces from a set of standard, reusable server-side components

-Provides a set of JSP tags to access those components

-Transparently saves state information and repopulates forms when they redisplay

-Provides a framework for implementing custom components

-Encapsulates event handling and component rendering so one can use standard JSF components or custom components to support markup languages other than HTML

-Lets tool vendors develop IDEs for a standard Web application framework

JSF provides a rich set of technologies for creating servlets in the Java EE engine. JSF goes beyond conventional JSP pages by providing techniques to automatically create and populate the backing beans for the web pages, and to allow for the configuration of page navigation within XML files.

When a request comes in corresponding to a faces page, any previous view is restored. Necessary events are fired; any requested validation is made on the input values, the entries are set in the model, and then the application runs allowing the view to be updated and the response rendered in pure html.

As JSF represents a standard for Java-based Web application frameworks, tool vendors can concentrate on developing IDEs for JSF instead of developing an IDE.

In this paper, I begin with a short discussion of the JSF lifecycle and then dive into the example code of Hangman Game that illustrates implementation of Web-based user interfaces with JSF and to take advantage of built-in validation.

Application architecture
Our initial index.jsp page is going to use a standard jsp tag to forward the client onto getName.jsf. Note the jsf suffix - even though we will be writing jsp apges, the application server will only set up the faces context if the page is suffixed jsf or faces. The faces context will then look for an equivalent jsp page to generate the necessary servlets and responses.

The getName.jsp page will contain a simple h:form using the JSF form element. This form element will provide a h:inputText to the name attribute of a PersonBean bean. It will link to the bean by setting its value attribute to the value of the personBean.name field using the Faces expression language. The h:commandButton will call the action "greeting". It is this action that will allow the faces context to route the form to the appropriate response. You will need to define a simple PersonBean that has a name field and the normal getters and setters. This will be managed by the JSF infra-structure, as we will define in the faces-config.xml file.

Now create a greeting.jsp, that is going to display the current contents of the personBean. Use the h:outputText element to display the current value of the name attribute of the personBean.

Finally edit the faces-config.xml to connect the index.jsp to the greeting.jsp when the from-outcome field is "greeting", and configure the personBean as a managed bean in the request context. Now everything should run smoothly.

Investigate the design of the project, and in particular, look to see how the rules in web-inf/faces-config.xml corresponds to the navigation rules above.
Your tasks:
1. Extend the application so that the user can navigate to a new page to see the high scores, and then return to where they were in guessing. To do this, create a new pagescores.jsp. In this page, create a subview that displays a table, similar to the approach taken incongratulations.jsp. Provide a button that returns the user to theguessNumber.jsppage. In the guessNumber.jsp page, provide a button that will jump to thescores.jsppage. Finally, modifyfaces-config.xmlto create two navigation rules that move fromguessNumber.jsptoscores.jsp, and vice versa.

2. Extend the HighScoreBean so that it records the date of when the high score was made, and change the high score display to show the date.

PersistentScoreBean.java To create a persistent object, the programmer just designs a Plain Old Java Object (pojo), annotates the object as being an entity through the@Entityannotation and designates one field to be the primary id through the@Idannotation. The programmer can then ask for fields to be genereated through@GeneratedValue, designate the name of the table, and which fields are to be saved in the table and so on, but in most cases, the defaults work well. Of course, there are times when the programmer has an existing set of tables which to be modeled as java objects, when setting tables and names explicitly becomes very useful.persistence.xml As always there is an xml configuration file, persistence.xml, to instruct the container how to manage the persistent objects that must be packaged in the jar file. In eclipse, the addition of the persistence project facet to a j2ee project will create the persistence.xml file in the right place, and provide user friendly editors. The key elements in this file are the name of the persistence unit, and the name of the data source into which the data will be saved. In the majority of our code, we will use the !DefaultDS data source previously defined in the jboss container, but this could reference any valid data source accessible to the container. Since we are developing our code, we'd like the container to create and update any tables we reference, so we set one property in our file to instruct the hibernate persistence provider to update tables.

HighScoreBean.java, HighScoreBeanLocal.java and HighScoreBeanRemote.java We can now create tables to represent pojos, but how does our code get access to the tables? To do this, we useEntityManagers?for the given persistence context, which allow us to persist the objects, find objects by primary key and to run various queries. They also allow for many other standard database operations. To get access to an EntityManager, annotate a private field in the class with@PersistenceContext, providing a unitName corresponding to the name given in the persistence.xml file above. The container will then inject the appropriate entity manager, which can then manage the persistent objects.

A minor inconvenience in the use of container managed persistence is that the backing beans in our JSF applications cannot be directly managed by the container to inject EntityManagers. Instead, we will use a stateless EJB3 session bean to provide access to the scores. To create a stateless session bean, we first define the interfaces that collect together our business methods, HighScoreBeanLocal andHighScoreBeanRemote?. To indicate that these are the local and remote interfaces, we annotate them with@Localand@Remoterespectively. The container will thus autogenerate proxies and stubs for the remote classes that will be access over RMI. The actual session bean then has to provide implementations for the business methods. To indicate that it is a stateless bean, it is annotated with@Stateless, given access to an entityManager as above, and then uses the manager to persist new high scores, and calls a named query to collect a list of all the scores. We will cover named queries in detail next week.

TestClient.java Note that we have a testing mechanism that allows us to check that the session bean is working, and storing data appropriately in the database. This TestClient runs as a standard Java application, not a EJB application, and so is just asked to run. It uses the standard naming context mechanisms to grab a reference to the bean, and then executes. Note that although the client is using the remote interface, there is none of the RMI boilerplate discussed in lectures. This is all hidden away in the container.
Now download and import the updated number guessingproject.
NumberBean.java To get access to the persistent data, the backing bean has to create a HighScoreBean. Since this is a stateless bean, this is done on demand when we using the naming system to look up the bean. Stateless beans can be given an explicit name, or will use their classname. When the container receives a stateless bean, it will store the associated name under the "java:comp/env/ejb/" context. If a naming context is retrieved by a standard j2ee component, such as one running in a container, the context is already set up (unlike in the testing client above), and the "java:comp/env/ejb" can be missed out.
Java EE Components
Java EE applications are made up of components. A Java EE component is a self-contained functional software unit that is assembled into a Java EE application with its related classes and files and that communicates with other components.

The Java EE specification defines the following Java EE components:

- Application clients and applets are components that run on the client.

- Java Servlet, Java Server Faces, and Java Server Pages TM (JSPTM) technology components are web components that run on the server.

- Enterprise Java Beans TM (EJBTM) components (enterprise beans) are business components that run on the server.

Java EE components are written in the Java programming language and are compiled in the same way as any program in the language. The difference between Java EE components and "standard" Java classes is that Java EE components are assembled into a Java EE application, are verified to be well formed and in compliance with the Java EE specification, and are deployed to production, where they are run and managed by the Java EE server.

Java EE web components are either servlets or pages created using JSP technology (JSP pages) and/or Java Server Faces technology. Servlets are Java programming language classes that dynamically process requests and construct responses. JSP pages are text-based documents that execute as servlets but allow a more natural approach to creating static content. Java Server Faces technology builds on servlets and JSP technology and provides a user interface component framework for web applications.

Static HTML pages and applets are bundled with web components during application assembly but are not considered web components by the Java EE specification. Server-side utility classes can also be bundled with web components and, like HTML pages, are not considered web components.
The JavaServer Faces lifecycle
JSF handles HTTP requests with seven distinct phases, as shown in Figure. The normal flow of control is shown with solid lines, whereas dashed lines show alternate flows depending on whether a component requests a page redisplay or validation or conversion errors occur.

The Reconstitute Request Tree phase creates a component tree for the requested page.

If that page previously displayed and JSF saved the page's state information, the state information is added to the request. This means that JSF automatically retains form information when a form redisplays; for example, when a user does not correctly fill out a form.

ajun hi lihita {ctrl C ctrl V marta} yeil...
RMI {Remote Method Invocation}
Java Remote Method Invocation (Java RMI) enables the programmer to create distributed Java technology-based to Java technology-based applications, in which the methods of remote Java objects can be invoked from other Java virtual machines, possibly on different hosts.

RMI uses object serialization to marshal and unmarshal parameters and does not truncate types, supporting true object-oriented polymorphism.

In the 1990's, the object-based programming model was extended to allow objects in different processes to communicate with one another by means of remote method invocation (RMI). RMI is an extension of local method invocation that allows an object living in one process to invoke the methods of an object living in another process.
Diagram rmi-slides p.28/73
An interface in Java specifies a set of methods that the object implementing that interface will provide. Java RMI uses interfaces which extend java.rmi.remote as a way of specifying which methods can be invoked remotely.
RMI's structure
The RMI system consists of several basic layers; a specific interface and protocol define the boundary at each layer. Each layer is independent of the next and can be replaced by an alternate mplementation without affecting the other layers.
Architectural overview:
The RMI system's layers consist of the following:
� stub/skeleton: client-side stubs (proxies) and server side skeletons (dispatchers);
� remote reference: reference and invocation behaviour (for example, unicast and multicast);
� transport: connection setup and management, remote object tracking; and
� distributed garbage collection: reference-counting garbage collection of remote objects.

RMI is a layer on top of the Java Virtual Machine, so it leverages the Java system's built-in garbage collection, security, and class-loading mechanisms. The application layer sits on top of the RMI system.
Object serialization
The RMI system can pass parameters and return values either by reference or by value. If the object to be passed is itself a remote object, RMI passes a remote reference to that object. However, if the object is not a remote object, RMI passes a copy of the object to the receiver, thus giving the effect of pass-by-value.

RMI uses Java Object Serialization to marshal and unmarshal parameters and return values. Object serialization provides a simple, easy-to-use mechanism for accurately making copies of objects across time and space. It encodes objects from one virtual machine into a stream of bytes. The stream can be passed through a network to another virtual machine or saved in a file or database for later retrieval. Later or elsewhere, object deserialization can construct copies of the original objects from the stream.

In RMI, the client's request to invoke a method of an object is sent in a message to the server managing the object. The invocation is carried out by executing a method of the object at the server and the result is returned to the client in another message. To allow for chains of related invocations, objects in servers are allowed to become clients of objects in other servers.

In creating a server, one essentially needs to create a thread which waits upon a socket for packets to come in. Initially it needs to set up the name in the rmi registry by which it can be called. The rmi registry is a bootstrapping mechanism through which remote objects can be located. It is a daemon which is run on the local machine. Remote objects which are created and need to be accessible through some well-known name bind themselves to the name within the rmi registry through the java.rmi.Naming class.
Naming and Directory Infrastructure
Finding resources is of particular importance in large-scale enterprise environments, where the applications built may depend on services provided by applications written by other groups in other departments. A well-designed naming infrastructure makes such projects possible and the lack of one makes them impossible. In fact, many business-process reengineering efforts begin with the design and implementation of a robust, enterprise-wide naming and directory infrastructure also known as Java Naming and Directory Interface (JNDI).

The primary function of a naming system is to bind names to objects. In order to be a naming service, a service must at the very least provide the ability to bind names to objects and to look up objects by name. JNDI provides an interface that supports all this common functionality.

There are a number of existing naming services viz. COS (Common Object Services) Naming, DNS (Domain Name System), LDAP (Lightweight Directory Access Protocol) and NIS (Network Information System) and NIS+

It's important to remember that JNDI is an interface rather than an implementation. It does allow JNDI to integrate seamlessly into an existing computing environment where an established naming service holds away.

The JNDI API is a powerful yet fairly simple API that can be used to access a wide variety of data sources. It is certainly not limited to LDAP or directories for that matter: using different SPIs (Service Provider Interfaces), JNDI can access other resources such as the file system or even DNS.
Persistence Architecture
Java RMI was an attempt to hide the network level and provide a consistent object model for distributed programs. The new Java Persistence Architecture (JPA) and supporting technologies will provide a similar insulating layer that will conceal low level details of data persistence mechanisms so allowing an application developer to work in a consistent "object programming" style, in near future.

In other words, The Java Persistence Architecture is a Java standards-based solution for persistence. Persistence Architecture uses an object-relational mapping approach to bridge the gap between an object oriented model and a relational database.

JPA represents a simplification of the persistence programming model. The JPA specification explicitly defines the object-relational mapping, rather than relying on vendor-specific mapping implementations. JPA standardizes the important task of object-relational mapping by using annotations or XML to map objects into one or more tables of a database. To further simplify the persistence programming model:

-The Entity Manager API can persist, update, retrieve, or remove objects from a database

-The Entity Manager API and object-relational mapping meta-data handle most of the database operations without requiring you to write JDBC or SQL code to maintain persistence

-JPA provides a query language, extending the independent EJB querying language (also known as JPQL), that can be used to retrieve objects without writing SQL queries specific to the database to be working with.

The Java Persistence API provides a POJO persistence model for object-relational mapping. It can also be used directly by web applications and application clients, and even outside the Java EE platform.

Data persistence, the ability to maintain data between application executions, is vital to enterprise applications because the required access to relational databases. Applications that are developed for this environment must manage persistence themselves or make use of third-party solutions to handle database updates and retrievals with persistence.

The Java Persistence Architecture (JPA) provides a mechanism for managing persistence and object-relational mapping and functions.

The JPA specification defines the object-relational mapping internally, rather than relying on vendor-specific mapping implementations. JPA is based on the Java programming model that applies to Java EE environments, but JPA can function within a Java SE environment for testing application functions.
Transaction Management
In any programming language, basic transaction management is indicating the start and end of a transaction as well as handling any errors that come up during the transaction. A transaction can be described as an indivisible unit of work comprised of several operations, all or none of which must be performed in order to preserve data integrity.

The isolation level measures concurrent transactions capacity to view data that have been updated, but not yet committed, by another transaction. If other transactions allowed to read data that are as-yet uncommitted, those transactions could end up with inconsistent data were the transaction to roll back, or end up waiting unnecessarily were the transaction to commit successfully.

A transaction-based system simplifies application development as the developers get rid off the complex issues of failure recovery and multi-user programming. Transactions are not limited to single databases or single sites. Distributed transactions can simultaneously update multiple databases across multiple sites.

Typically, transactions refer to operations that access a shared resource like a database. All access to a database is performed in the context of a transaction. All transactions share the following characteristics:
Atomicity

Consistency

Isolation

Durability
These characteristics are denoted by the acronym ACID.

***** A transaction often consists of more than a single operation. Atomicity requires that either all or none of the operations of a transaction are performed for the transaction to be considered complete. If any of a transaction's operations cannot be performed, then none of them can be performed.

Consistency refers to resource consistency. A transaction must transition the database from one consistent state to another. The transaction must preserve the database's semantic and physical integrity.

Isolation requires that each transaction appear to be the only transaction currently manipulating the database. Other transactions can run concurrently. However, a transaction must not see the intermediate data manipulations of other transactions until and unless they successfully complete and commit their work. Because of interdependencies among updates, a transaction can get an inconsistent view of the database were it to see just a subset of another transaction's updates. Isolation protects a transaction from this sort of data inconsistency.

Transaction isolation is qualified by varying levels of concurrency permitted by the database. The higher the isolation level, the more limited the concurrency extent. The highest level of isolation occurs when all transactions can be serialized. That is, the database contents look as if each transaction ran by itself to completion before the next transaction started. However, some applications can tolerate a reduced level of isolation for a higher degree of concurrency. Typically, these applications run a greater number of concurrent transactions even if transactions are reading data that may be partially updated and perhaps inconsistent.

Lastly, durability means that updates made by committed transactions persist in the database regardless of failure conditions. Durability guarantees that committed updates remain in the database despite failures that occur after the commit operation and that databases can be recovered after a system or media failure.

Transaction management for Enterprise JavaBeans (EJBs) is handled by the EJB Container and the EJBs. Enterprise JavaBeans make it possible for applications to update data in multiple databases within a single transaction.

EJBs utilize a declarative style of transaction management that differs from the traditional transaction management style. With declarative management, the EJB declares its transaction attributes at deployment time. The transaction attributes indicate whether the EJB container manages the bean's transactions or whether the bean itself manages its own transactions, and, if so, to what extent it does its own transaction management.

Traditionally, the application was responsible for managing all aspects of a transaction. This entailed such operations as:

Creating the transaction object, explicitly starting the transaction, registering resources involved in the transaction, Keeping track of the transaction context, committing the transaction when all updates completed.

Creating the dynamic web project Web applications are deployed to the application server in a war file (as described in the java ee tutorial. A war file consists of the necessary class files, jsp and html files, and any media and graphic for the application, along with a configuration file web.xml written in xml.

At some point in developing web applications, you will need to look at the gory details of the detailed configuration, but right now, let's take advantage of how eclipse makes such deployments easy.

From the file menu, let's create a new dynamic web project.
.
Note that for any of the eclipse dialogs, help is available by using the F1 key. Pick a suitable project name, such as "comments".

We need to set up a target runtime environment, so let's browse to where we've installed jboss, and choose that directory.

This will allow eclipse to control the applicaton server, dynamically deploying, and allowing us to debug applications. This is a standalone web project for the moment, so we won't be wrapping this within an EAR. Content will go in the webcontent directory. Note that in the project explorer pane, there is a deployment descriptor, which is an editor on the web.xml Creating our first static jsp page

We now have an empty application. Let's show some content. On the "WebContent" folder, bring up the context menu and choose a new jsp page . Call this "index.jsp".

Add a title ("Testing Comments"), and then add a level 1 heading in the h1 element. Notice that we have tag completion. Now add some body text and a link to "CommentAction", which will generate some server side magic.

Creating our first servlet and associated dynamic jsp page Java servlets (J2EE tutorial and api documentation) are the basic workhorse of java web applications. Coders generate code (either directly or indirectly through jsp pages) to override the various HTTP request methods such as doGet and doPost. The application server will then create instances of this class to serve requests, and these instances can access session data, their own instance and class data. On the project name, bring up the context menu, and create a new servlet.

Use a name such as CommentAction, and its always good practice to use packages (eg "comments"). The next dialog helps in configuring the servlet in web.xml, by setting up initialization (ignore at the moment) and what URL this servlet will serve. Let's use "CommentAction" or wherever you redirected in the index.jsp page.

In our application, we won't make a distinction between posts and gets, so lets redirect doGet to doPost. If we got a comment in the "comment" parameter, let's extract that, check that it has some length, and add it to the stored list of comments - a static ArrayList. Next we need to create a JavaBean - let's call this CommentBean . On the project pane, create a new Java class, in the same package as the servlet. Add a private ArrayList of Strings field called comments. In the source code window, use the context menu to look at the source generation options, especially the getters and setters. Generate some code.

Let's return to our servlet. Create a CommentBean, set it to have a reference to our comments, and add it as an attribute to the HttpServletRequest as "commentBean", allowing later servlets down the chain to have access to the bean. This is a common pattern in web applications, where a servlet gathers data for the model, providing access to the view set out in jsp pages. Now we're going to forward control onto a JSP page that will dynamically create a page depending on how many comments there are. Create a RequestDispatcher that's going to forward onto "comments.jsp", and then forward control to that page.

At this point its important to understand the difference between JSP pages and normal HTML. Inside the Java web server, JSP pages are compiled on demand into Java servlets, creating the same class of Java object as the servlet above. Normal print statements are used to print out the HTML elements created, and any embedded Java is weaved into the servlet. However, I don't recommend using Java directly within the JSP page; instead use one or other of the templating approaches, which first process the template instructions, replacing with standard Java and then creating the Java servlet.

Let's the most mature of the templating approaches, jstl, to our project, by downloading and saving from http://jakarta.apache.org/site/downloads/downloads_taglibs-standard.cgi. From the context menu on the lib folder, choose import, and open the downloaded archive. Select the two jar files and import these into the project. We can now make use of the java servlet templating in our jsp pages, as long as we import the tag libraries.

JavaServer Pages Standard Tag Library (JSTL) is a simplified way of bridging between Java and the html view of the application. Tags within the JSP page are used to import the tag libraries, introducing elements that look a lot like standard XML into the page. These elements provide ways of importing variables, controlling the flow of execution, and testing values in a simple Expression language. In our code, we're going to import the commentBean into our page with the jsp:useBean tag, and then iterate over the comments, using the c:forEach element, printing them out using the dereferencing of ${comment} .
Now let's try the web application...
CommentAction.java CommentBean.java comments.jsp

