Computing and concurrent system design

ACKNOWLEDGEMENTS
Especially I would like to thank our lecturer Mr. Balachandran for his valuable guidance that he offered to us throughout the project and once again a heartfelt thank you, to each individual that is not mentioned above and my family members without whom, this project would not have been a success.
CHAPTER 1

INTRODUCTION
This assignment has been designed to apply appropriate concurrent program design methods in designing and implementing a concurrent program.

This software to be designed will handle a simulated music CD Vending Machine having a attractive strip reader for reading a debit card, a customer consol for interaction with the customer, a dispenser for CDs (one or more time).

This program is being used client server architecture to develop. So there is a centralized server and can access two or more users to do their transactions concurrently. A customer will be required to insert a debit card and enter a personal identification number (PIN) and both will be sent to the bank for validation as part of each transaction.

This vending machine provides some services like,
· Customer able to buy any item available in the vending machine.

· Customer must able to make a transfer of money between any two accounts linked to the card.

· Customer must be able to make a balance inquiry of any account linked to the card.

· Operator can power on client machines.
If the bank determines that the customer entered invalid PIN, the customer will be required to re-enter the PIN before a transaction can proceed. If the customer is unable to successfully enter the PIN after three tries, the card will be permanently retained by the machine.
CHAPTER 2

REQUIREMENTS
The basic requirements for the system as seen from the marking scheme are,
· Multiple clients access the server concurrently.

· Should be able to buy CDs by using a debit card.

· Should be able to transfer money between two accounts.

· Should be able to view the balance of the account that is assigned to the card.

· Print customer receipt after each successful purchase.

· If customer enters wrong pin number 3 times consecutively the user should be suspended.

· Has the possibility of more than one client modifying a given resource at one time (need to handle the issue of data corruption).

· Should maintain a log file at the client side.
ASSUMPTIONS
· A debit card can have only one and only one account assigned to it.

· A bank account can be used by many card holders and is called as a joint account.

· A joint account can be accessed by many card holders at a given time (Concurrency mainly applied to here).

· A card holder can transfer money to any bank account except for the account that he is already logged at that moment.

· Vending machine is always full of CDs. The operator loads the Vending Machine with CDs before any customer uses it any of the CD types is empty.
Note: - Logically one debit card is used by one card holder and can be logged once at a given time. But technically as it's difficult to implement a real debit card with a magnetic strip reader in the simulation program, a unique card number has been used instead of the card. There is a possibility where the user might enter the same card number in one or many instances of the vending machine simulation program at a given time while experimenting the concurrency issue. In order to avoid data corruptions that can occur in such a situation a validation mechanism has been used in the system (This validation is required for only the simulation program and is un useful in real life scenarios) , to check whether a person already has logged in using the same card number that is already used by another person at the same time.
CHAPTER 3

DESIGN
The most critical part of the whole system is the implementation of the server. There are two main functionalities that the server should perform. Those are
· Reading data from the data source

· Writing data to the data source
The challenge here is that the reading and writing should be handled concurrently without corrupting data. Bates & Sierra(2008,p.705) describes this issue as a "race condition", where multiple threads can access the same resource and can produce corrupted data if thread races in too quickly before an atomic operation that should have been completed. So that in order to avoid data corruption and deadlocks while handling all kinds of read and write requests from each unique vending machine, Finite State Process Statements (FSP) have been used.

The read and write functionalities can further be divided into these sub tasks.
1. Start read

2. Stop read

3. Request write

4. Start write

5. Stop write
Modeling the readers and writers
After considering the tasks that are assigned to the server the main actions can be declared as below.

set Actions = {startRead, stopRead,

requestWrite, startWrite, stopWrite}

Reader and writer processes can be model as below,

READER = (startRead -> interpret -> stopRead -> READER)

\{interpret}.

WRITER = (requestWrite -> startWrite -> modify -> stopWrite -> WRITER)

\ {modify}.

Above interpret and modify actions are hidden since they don't make an impact to the synchronizing access to the shared data source.

Note: - Readers are dismissed for access if there are any Writers waiting to acquire access, and this might let the Writers wait forever for access. In order to avoid such a situation requestWriter action has been added. So that before a Writer acquire access, it must first request for it. Modeling the Read /Write lock

Reading is done if and only if there are no waiting or executing WROITERs. Writing is done if and only if there are no READERs or WRITERs that are executing at the moment.
Safety property
In order to check whether the lock behaves as preferred a safety property has been defined.

property SAFE_RW = (startRead->READING[1] | startWrite->WRITING),

READING[j:1..Numread] = (when(j<Numread) startRead -> READING[j+1]

|when(j>1) stopRead -> READING[j-1]

|when(j==1) stopRead -> SAFE_RW

),

WRITING = (stopWrite -> SAFE_RW).

While the lock is free, it can be used for either READING or WRITING. It's been depicted above that if READING is been started then further startReads are allowed. While the WRITING has started only stopWrite is allowed. In order to check whether RW_LOCK satisfies the property that has defined the two been composed as below.

||READWRITE_LOCK = (RW_LOCK || SAFE_RW).

The LTS diagram for the above composition is as follows.

The composition of READER And WRITER with the READEWRITER_LOCK is depicted below. Analysis done using LTSA tool reveals that there are no deadlocks or safety violations.

||READERS_WRITERS = (reader[1..Numread] :READER

|| writer[1..Numwrite]:WRITER

|| {reader[1..Numread],writer[1..Numwrite]}::READWRITE_LOCK).
LTS Analyzer Results for READERS_WRITERS
Check Safety
Composition:

READERS_WRITERS = reader.1:READER || reader.2:READER || writer.1:WRITER || writer.2:WRITER || {reader.1,reader.2,writer.1,writer.2}::READWRITELOCK.RW_LOCK || {reader.1,reader.2,writer.1,writer.2}::READWRITELOCK.SAFE_RW

State Space:

3 * 3 * 4 * 4 * 24 * 4 = 2 ** 15

Analysing...

Depth 11 -- States: 88 Transitions: 230 Memory used: 10086K

No deadlocks/errors

Analysed in: 1ms
FSP for the Client
The Start and Stop functionalities of the vending machine has been modeled in FSP as below.
Modeling the Vending Machine
The FSP model for the user actions on the Client machine is depicted below.
CHAPTER 4

CLASS DIAGRAMS
Client Application

Server Application
CHAPTER 5

CODE EXTRACTS
It's been realized that the implementation of the LOCK is the heart of the system and is being discussed under this chapter.

When it comes to handling concurrent users The data can easily be corrupt due to race condition that discussed under the design chapter. For instance if one customer tries to purchase a CD while another tries to check balance the data can be seen by the two at a given time might be wrong. So in order to prevent catastrophe, a lock has been used as discussed in the design phase. An interface called ReadWrite has been introduced to implement such a mechanism.

Four methods have been defined there to handle read and write robustly in the system,
· AcuireRead()

· AcquireWrite()

· ReleaseRead()

· ReleaseWrite()
These methods have been declared as synchronized, so that while a user acquires the lock of the object of the class that implements the ReadWrite interface another user waits till the lock releases.

The following acquireRead method would lock the writing activities when it has gained the lock.

It's been checked if there are any other WRITERs waiting for data modification or there are WRITERs that are modifying the data at the moment. By doing so the relevant thread that calls the acquireRead can give priority for the write methods by releasing the lock by calling the wait() method, in order to prevent any dead locks that may occur. This thread interaction has been achived by using wait() and notifyall() methods of the Object class.

Bates & Sierra(2008,p.724) in their fabulous book further reveals that it's a good habit to use notifyall() instead of notify() in a situation where there are many threads that are waiting for a notification. Otherwise if notify() used what would happen is that only the JVM (not the CPU) will decide which waiting thread to be notified and this can lead to deadlocks as some threads might have to wait forever to acquire the lock.

The below code snippet is for the releasing of the lock after a successful READ operation.

Though a thread request to acquire the lock to write it should let waiting till all the reading threads have finished reading and all the writing threads that were begun writing has finished writing. Below is the code that used for acquiring the lock.
CHAPTER 6

TESTING

CHAPTER 7

CRITICAL APPRAISAL
By engaging myself in the development of the system I really got a huge and interesting experience of how much damage the concurrency issues might make to a system in reality, and how we can avoid them. It was the bank server that was so much challenging as it's where all the concurrent tasks been handled.

During the designing of the system Chapter 7 & 8 of the book Concurrency State Models & Java Programming (Magee, J. & Kramer, J. 2006), has helped a lot. When it comes to implementation the Chapter 9 of the book Sun Certified Programmer for Java 5.0 SCJP (Bates, B. & Siera, K. 2008), has helped me to get a deeper knowledge about the behavior of the threads and how to let them interact each other while synchronizing a shared object.

At the conclusion I assume that I have built a system that meets almost all of the requirements that are claimed to be.
REFERENCES & BIBLIOGRAPHY
· Magee, J. & Kramer, J. 2006, Concurrency State Models & Java Programming, John Wiley, Chichester, UK.

· Bates, B. & Siera, K. 2008, Sun Certified Programmer for Java 5.0 SCJP, DreamTech, Delhi.
APPENDICES

APPENDIX A
Instructions on how to use the system
Just double click the Client.jar file in order to run the client program. In the CD also include,
· Java doc for the client side application

· Java doc for the server side application

· Compiled LTSA files

· Soft copy of the document itself.

