C++ features with the Object Oriented Method (OOM)

Member Data and Member Functions:
The member function should be used to cooperate with the data that contained inside user defined types. The user defined type offer flexibility in the method of programs writing, which means a one programmer able to write a user defined types with assurance the interfaces. So, others programmers also able to write the core of a program with the mentioned expected interfaces. These couple of pieces will put together after that will be compiled for usage. These types of the user defined offer encapsulation defined in the concept of Object Oriented programmes [OOP], as discussed by (5).

Inside the classes, to keep the data members secure and to protect it, the programmer must define functions to carry out the operations on that data members. [OOP] using these names (Member functions and functions) interchangeably in order to reference to classes. The function prototypes are stated within and inside the classes’ definitions. In addition, these kinds of prototypes are able to take the structure of non class functions also class appropriate prototypes. Functions are stated and defined inside its class definition. Nevertheless, the vast majority of the functions can have really long definitions which make the classes as unreadable classes. Therefore experts has created an operator which is the scope resolution operator "::" to define the function outside of the class definition. So, it allows and helps programmers to identify the functions and define them anywhere. This helps the programmers to supply a header file [.h] which is defining the class and a [.obj] file which is built from the compiled [.cpp] file that have the function definitions inside it. This is using to hide the performance and the implementation also to prevent anyone from the tampering. So, the user must define all the functions again to modify or alter the implementation. According to (6), member functions have specific feature which is the accessing to the private and protected data member of its class and control them. The external functions can not be able to access to the private and protected data members of the class.

Functions which are inside the classes can access and modify (but not true if the functions are constants) the data members with no reason for declaring them again, because the data members are already and previously are declared inside the class, as discussed by(7).

The classes are encapsulation of data members’ with functions that control the data. In addition the classes also can have others important members that are important in the architecture.

A significant point about the data members that the data member can be any types of legal data; for instance, structure types, a class types and so on. Also they be able to be stated as pointers and can normally accessible as the same as other data members, as discussed by (8).
Copy constructor:
According to (9), copy constructor is another and different Way to Create the Objects. When creating an object is needed from an existing objects that required a special constructor, which is a copy constructor. Its job is to allocate memory with copying the plain of the old data [POD] values from others objects that inside the same class. The copy constructor has only one parameter as well as a reference to that existing object.
When we need a copy constructor?
According to (11).The copy constructor should call when created a new variable from an existing object. As shown below:

human z("Mickey"); building z by using the constructor.

human r(h); building r by using the copy constructor .

human h = z; initialization in declaration by using the copy constructor.

h = z; there is no copy constructor or constructor[Assignment operator].

f(h); the formal value parameter is initialized by usin copy constructor.

A function has made an object return.

In the above example, the copy constructor is called to generate a copy of the object; however, if the class has no copy constructor already defined for it, immediately C++ will use a default copy constructor that will copy each field. [Build a shallow copy]. As the same as the default constructor, if there is a one required and still not supplied yet the compiler will supply one. If the object has being copied in the [POD] then there is no problems, (no reference, virtual function) or other complicated features that affects the data when it stored inside the object. The need of the copy constructor is actually because of the need for a very deep copy or a resources management. Thus, it is obvious now the need of the assignment operator, the destructor, based on (10).
When we do not need a copy constructor?
(12) State that there is no need to write a copy constructor when the shallow copies are performing fine, in other word, if there is no pointer to allocate the memory inside the object; in this case the shallow copies are sufficient. So, default assignment operator and default destructor as well as the default copy constructor all are doing well and fine working, thus, no need for the copy constructor.
The syntax of the copy constructor:
The copy constructor will get a reference that is for a const parameter. The const parameter is to assurance that the copy constructor does not modify or change it, and the reference is reference that because of a value parameter will need to produce a copy, that will need to invoke the copy constructor, that will need to produce a copy of its parameter, that will need to invoke the copy constructor, that will..... And so on. Below there is an example about a copy constructor for the [my class] class, that actually does not need it. That means the action of the default copy constructor that copied the fields is doing well, just to illustrate how it performances.
 the file myclass.h

class myclass

{
 public:
 myclass(const myclass& p); the copy constructor

 the file myclass.cpp

myclass::myclass(const myclass& p) {
 a = p.a;
 b = p.b;

}

 the file myclass.cpp

myclass p; default constructor is called here.

myclass s = p; copy constructor is called here.

p = s; not a copy constructor, [Assignment].

From all the above information; obviously we can recognise that the Copy constructor is a constructor function that has the same name of its class which use to generate a clone copy [Deep copy] of objects. Three places that must the copy constructor called; first place, if there is need to create an object based on another. Second one, if the object is passing by value to a function as parameter. Finally, if the function has to returns the object. When the copy constructor is not defined or distinct in its class, the compiler will define one to ensure a shallow copy. And if there is no pointer variables inside the class to allocate the memory dynamically, then there is no reason to write or define the copy constructor. This is the job of the discretion of the compiler itself. Nevertheless, if there are a number of pointer variables inside the class and dynamical allocation for the memory, then this class must have its own copy constructor. Below is a simple code containing two classes with and without the copy constructor, based on (12). For example:
 #include<iostream>

using namespace std;

 class y the copy constructor is used in this class
 {

private:
 char *age;

public:
 y()

{
 age = new char[30];

}

~y()

{

delete age;

}
 the Copy constructor is here.
 class y(const y &b)

{
 age = new char[30];
 strcpy(age, b.age);

}

};
 class x no copy constructor used in this class

{

private:
 int i;

public:
 x() {i=10;}
 ~x() {}

};

void main(void)

{
 y some_obj;
 system("pause");

}

Assignment operator:

(13) State that this type of operator which is take this syntax [=] is called the assignment operator which have to be member function, assignment operator given a default behavior by the compiler for defining classes, every member is performing an assignment using its own assignment operator. Such behavior is usually acceptable for classes that just have variables. Whereas, if classes contain pointers or references to the outside resources, then assignment operator has to be overloaded [Rule; if a copy constructor and destructor are required as a result is the assignment operator]; otherwise, such as, if there are two strings want to share the same buffer and changing one will changes the other.
The assignment operator must have duties to do (14) which are:
· Cleaning the object from all the old contents.

· Copying all the resources that belong to other objects for classes which have the raw pointers, the assignment operator has to ensure for self assignment before start making the assignment, that normally will not be working (it is similar to when the old contents of the object are completely erased and removed; so, they cannot be copied to fill up the object again).Point of view, self assignment is usually a symbol that represents a coding error, and therefore for classes that have not raw pointers, such check will definitely be omitted, therefore the action is wasteful and consuming the cycles of cpu. Example:
class RawPointer

{
 T *m_ptr;
 public:

RawPointer
 (T *ptr) : m_ptr(ptr) {}

RawPointer
 & operator=(RawPointer const &rhs)

{
 delete m_ptr; to make the resource free.
 m_ptr = 0;
 m_ptr = rhs.m_ptr;
 return *this;

};

};

RawPointer y(new T);

y = y; which means y.m_ptr == 0.

class RawPointer2

{
 T *m_ptr;
 public:

RawPointer2(T *ptr) : m_ptr(ptr) {}

RawPointer2& operator=(RawPointer2 const &rhs)

{
 if
 (this != &rhs)

{
 delete m_ptr; to make the resource free.
 m_ptr = 0;
 m_ptr = rhs.m_ptr;

}
 return *this;

};

};

(14)The overloading assignment operator is using for declaring the overload which is inside the private part of the class but it does not defining it. This means any code that trying to run an assignment will be failing on couple of accounts, the first fail by referencing a member function which is private and second one to connect by having no definition that must be available and valid. When copying is banned this is completed for classes, and commonly completed with adding of a copy constructor that is declared and privately; for example:

class No assign or copy note: if you want to compile this code do not put spaces between class name.

{
 public:
 No assign or copy() {};
 private:
 No assign or copy(No assign or copy const&);
 No assign or copy &operator=(No assign or copy const &);

};

class MyClass : public No assign or copy

{
 public:
 MyClass();

};

MyClass i, j;

i = j;Because of private assignment operator it is fails to compile

MyClass q(i);Because of private copy constructor it is fails to compile

Although the using of the assignment operator is quite uncomplicated, accurately applying an overloaded assignment operator may be make a tiny tricky and difficult more than the anticipation. Such as, firstly, in some cases when the assignment operator is not called and the expectation is to be called. Secondly, the issues that in dealing with the memory and allocated it dynamically. The assignment operator in its simplest concept is using to copy the values from one object to another which already exists.
copy assignment operator :
(15) Said that the copy assignment operator is a particular case of the assignment operator which is using to allocate objects to each other of the same or similar classes. In addition, it is one of the member functions but it is a special one which is the compiler will generates it automatically if not clearly declaring from the programmers. The compiler will generate a code that should perform a shallow copy [member wise].

There is distinguishing feature among the copy assignment operators and the copy constructors, which is that the copy assignment operator must and has to clean up the target of the assignment from the data members with accurately handle the self assignment; however, the copy constructor has to assigns the values to data members that is not initialized yet. For example:

Myarray firstly;Default constructor is used for initialization.

Myarray secondly(firstly);Copy constructor is used for initialization.

Myarray thirdly = firstly; Also copy constructor for initialization.

secondly= thirdly; The assignment by the copy.
Editing the overloading copy assignment operator (Based on (16))
If there is an obvious reason to make deep copies of objects have, exception safety must be taken into concerns. Only one method to get this if the resource deallocation certainly not fails which is: new resources are acquiring, old resources are releasing and assigning the handles of the new resources to the object. For example based on (16):

#include<iostream>

using namespace std;

class array {

int * array;

int count;

public:
 array & operator = (const array & other)

{
 if (this != &other)

{ Make protection against the invalid self assignment
 Elements are copied and new memory is allocated
 int * new_array = new int[other.count];
 std::copy(other.array, other.array + other.count, new_array);
 Deallocation of the old memory
 delete []array;

 the new memory is assigningto the object.
 array = new_array;
 count = other.count;

}

return *this.
 return *this;

}

};

However, if there is no failing no throw function [swap function] is available for all the sub objects of the member as well as the class will provide a destructor and a copy constructor According to (17) the mainly straightforward method for implementing a copy assignment is below:

public:

Swap member function will not fail.

void swap(array & other) {

All members are swaped(Also if applicable the base subobject)with others
 std::swap(array, other.array);
 std::swap(count, other.count);

}

Argument is passed by value.

array & operator = (array other) {

Swaping with the others
 swap(other);

Always return *this by convention.

return *this;Releasing memory and others are destroyed.
 }

Why the operator = returns my array& instead of void? The answer is simple, to let for concatenation of the assignments:

array1 = array2 = array3;

 array3 is assigned to array2

 Then array2 is assigned to array1
Operator Overloading:
(18) Believes that the keyword operator is using for declaring the functions and specifying what does the symbol operator mean whenever it is applied to case of a class. Thus the operator has not only one single meaning but more than that, or [overloads] it. The compiler can distinguish among the dissimilar meanings of an operator by testing its operand’s types.
The overloading principle relates not just to the functions, but relates to the operators as well. Therefore, the operators meaning can be unlimited from built in types to the defined types of the user. So, the programmers are able to supply operators by overloading inside any class, the operator’s built in which should perform some specific calculations and computations whenever the operator used in such classes with the objects. Now there is one question might take place here: is this actually helpful in the implementations of the real world? Some of the C++ experts believe that overloading in majority of the time is not helpful. Also they consider that overloading operator are making C++ language more difficult and complicated, this is the main reason for banned operator overloading in Java. However, it can be easy to use the operator overloading without any reasons to know all the complexities of its implementations.

complex x (2.3, 3.3);complex numbers are in this class.

Complex y(3.5, 4); constructor has took two parameters of the imaginary and real parts.

Complex z = x+y;addition must be overloaded for this one to work.

 addition with having no overloaded operator+may looks like this.

x.Add(y);

complex z(x);

obviously this code is not suggestive, so using the concept of that many operators seem to be suitable and its use is intuitive, it would makes the codes more clearer than when functions are used .Programmers are abuse such technique in many cases, when the class represents the concept which is not related to the operator; for instance, [+] and or [–], in this situation it is not good idea to use operator overloading because of the confusion creating. Thus, for the above code we must write the [+] operator to make a suitable addition between the two parts [imaginary and real] and the assignment operator as well.

#include<iostream>

using namespace std;

class Ccomplx{

private:
 double real;
 double imag;
 double Getreal();
 double Getimag();

public:
 Ccomplx(double re,double im)
 :real(re),imag(im){};
 Ccomplx operator+(Ccomplx);
 Ccomplx operator=(Ccomplx);
 };

Ccomplx Ccomplx::operator+(Ccomplx num){
 real = real + num.Getreal();
 imag = imag + num.Getimag();
 return *this;
 }

The assignment operator may be use as overloaded operator. Point of view, to get inside the two private parts from the parameter [imaginary & real] although the access is denied, we should call the accessory function also to successfully avoid this challenge and we must make friend function for [+] operator that can access the private members of the complex class. These documentations will talk about the friend functions later on. The motivation for making so is understood by testing the dissimilarity between the choices: if the operator is a member; so, the expression has to be of such particular type. But if it is a global function the implicit defined conversion can let the operator act although first operand is completely not of the exact type, based on (19).

The operands number will not be overridden, a binary operator takes 2 operands, a unary just one. Precedence has the same restriction acts; for instance, the addition takes its place after multiplication. There are many operators which do need to the first operand because its use is restricted only same the member function but not static so they will not be globally overloaded; such as, (), [], ->, and =. The meaning of the operator =or & may be changed or erased by making them as private operator by overloading. There is another meaning for +operator that are overloaded for doing concatenation, this meaning from string class STL. JAVA also allowed to use + as concatenation but this is not extensible for many other classes, as discussed by (20). According to (21), the majority of the operators may be overloaded excluding the operators that are for scope resolution (::), or (.*) which is belong to the selection of the member to a function and through a pointer and (.) that for the selection of the member. Therefore operators behavior for the built in will not be changed by overloading them. Point of view, C++ simplest codes are using the overloading operators because of the widely use of this technique in the STL; for example, “HELLO WORLD”, the IO (inputsoutputs) and so many basic codes.
Friend Functions:

Friend Function definition, (22) believes that:
The friend function is using to access the private members of the class. The class will allow such functions that are non member with other classes to access inside its own non public data, by making them as friends. Therefore, the friend function definition is a normal function or a member of a different class.
Other definitions:
The friend function is not a member of a class but it has rights to access to the private and protected part of the class members. Also it is not considered the class members; it is a normal and external function that is taken particular access privileges. Friend function is not in the scope of class and it is not called by using the member operators [–>and.] unless it is a member of another class. In addition it is declared by the class which is grants the accessing. The declaration of friend can taken a place wherever the declaration of the class in. Because it will not be affected by the keywords access control, as discussed by (23).

Friend function is a function that defined outside of a class; however which the class declares to be friend therefore that it can use the private members class. This is usually use in the overloading operators, based on (24)
The Need for this Function:
(25) State that if the data are declared as private in the class, then anything outside the class will be inaccessible. If the programmers are need to access private data from non member function or an external class. They need to handle such cases, Friend functions concept is really a helpful type of tools.
Using and defining the Friend Function:
Writing this function it is similar to any other normal functions, except for the declaration of it that is preceded with the keyword friend. The friend functions must have the class that is declared as friend and passed to it in argument. The most common using for friend functions is overloading << and >> for the inputs and the outputs [IO]. Another use of the friend is to allow operators to be commutative. The operators are commutative if the result is the same in spite of the order of its operands. Some examples, multiplication, addition, division and subtraction they are not commutative.
Assuming z is a class object that has been written and j is an integer, [z+j] must take the same meaning as [j+z]. The [+] in [z+j] is fine if the [+] operator between an object and [int] is defined as a member function in the class [x]. Nonetheless, the [+] in the [j+z] that comes secondly can just be as a friend function. That is because of the overloading redefining operators can just be made for the classes, but not the primitive types, and the definition of the operator is based on the class of the left operand. (25)
Important notes while using friend functions, (by (26))
· The place of the keyword friend is in the declaration of the function and not in the definition of the function.

· The declaration of a function as friend can be placed in any number of the classes’.

· When declaring a class as a friend, it will access to the private data of the class and make it a friend.

· A friend functions whether it is a member function or not, will take the rights for accessing to the private member of the class.

· Friend function can be declared as a private or a public.

· It is possible to invoke a friend function without using of the object. The friend function will take its argument as objects, for example:
#include<iostream>

using namespace std;
 class Amina{

private:

int x,y;

public:

void test()

{

x=450;

y=660;

}

friend int compute(Amina);

}; Friend Function and with the object of class to which it is friend passed to it.

int compute(Amina e1)

{

Friend Function Definition that is accessing to private part.

return int(e1.x+e1.y)-8;

}

int main(){

Amina e;

e.test();

cout<<"The result is:"<<compute(e);

system("pause");

 Friend Function called with object as argument.

}

The out put is: The result is 1102.

The compute function () which is non member of the Amina class. In order to give this function the rights to access the private part x and y, it should be created as a friend function for that class. The compute () function has declared as friend:

friend int compute(Amina e1)

Another point based on (27) that, the class cannot control friend functions’ scope; therefore, the declaration of the friend functions has to be at the beginning of the file [.h] but do not apply it to the private and public.

Efficiency: is a possible use of the friend because friend function can directly access the private members it can avoid use getter functions’ cost. Whereas, it will not do that unless there is a really need to do so, because it modify the code by make it unreadable and bring in many errors’ sources through the increasing dependency.

Another use of the friend function is that cosmetic use for making some of the functions call attractive more than before. My example that according to (28),
 Time t1, t2;
 . . .
 If (t1.compareTo(t2) == 0) . . .

It will be more attractive if it written likes this:
 If (compare To (t1, t2) == 0) . . . (28)

Because compare To does need to look at the private values in t1 and t2, so the second form is possible only if the class has declared that compare To as a friend.

Below is another example for using friend function, the function () is a friend of the classes X and Y which is using for displaying the private members of X and Y. rather than writing two separate functions in each of the classes just one friend function will be used to display the data of the classes.For example:
 #include<iostream>

Common friend function example to exchange the private values of two classes
 class X;
 class Y;

class X{
 private:

int valuea;
 public:

void in(int x){

valuea=x;

}

void display(){
 cout<<valuea;

}

friend void exchange(X&, Y&);

};
 class Y{
 private:

int valueb;
 public:

void in(int x){

valueb=x;

}

void display(){
 cout<< valueb;

}

friend void exchange (X&, Y&);

};
 void exchange(X& i, Y& j){
 int temp=i.valuea;
 i.valuea=j.valueb;
 j.valueb=temp;

}
 int main(){
 X obja;
 Y objb;
 obja.in(2000);
 objb.in(3000);
 cout<<"\n Before";
 obja.display();
 objb.display();
 cout<<"\n After";
 exchange(obja, objb);
 obja.display();
 objb.display();
 return 0;

}

Below the running programe with the out put:

Before……………………………..

After………………………………..

This is another example

#include <iostream>

using namespace std;

class Y; Example:Forward declaration of class Y in order to compilefor example.

class X{

private:
 int x;

public:
 X() { x=10; }
 friend void show(X& i, Y& j);

};

class Y{

private:
 int y;

public:
 Y() { y=18; }
 friend void show(X& i, Y& j);

};

void show(X& i, Y& j){
 cout << "X::x=" << i.x << endl;
 cout << "Y::y=" << j.y << endl;

}

int main(){
 X x;
 Y y;
 show(x,y);

}

The output for this program is:
X::x=10

Y::y=18

(29) A few notes on friend functions classes. Firstly, although display is a friend of Storage but it cannot access directly to [*this] pointer of the objects’ storage. Secondly, display is storage’s friend; this is not meaning that storage is a friend of display as well. For instance, two classes have to be friends of each other; both must declare their self to each other as a friend. Finally, if the class x is a friend of class y, and y is a friend of class z, that is not meaning the class x is a friend of class z. Using friend functions and classes must be carefully, because they allow the friend function to infringe encapsulation. If the class details have changed, the friend details will also be changed compulsory. As a result, limit the using of the friend functions classes to the minimum is excellent idea, as discussed by (30).
Aggregation
According to (31) an aggregation is a particular sort of composition whenever no ownership implied among the sub objects and the complex object. The sub objects will not be destroyed, if the aggregate is destroyed.

For instance, suppose a university has a math department or faculty that indeed has tutors. Because of, the tutors are not belong to the faculty for ever (they just employments). If the faculty that represent the aggregate is destroyed, the tutors will not destroyed as well because their exist is independently (they can looking for another jobs in other universities or faculties).

Because of the aggregations are only a special compositions type, their most implemented is quite the same; however, the difference among them is mainly semantic. Usually in the composition there is a need to add subclasses using pointers or normal variables wherever handled the process of deallocation and allocation is done by the composition of that class.

There is another need to add other subclasses as member variables to the complex aggregate class. Nevertheless, such member variables are usually pointers or references that are used for pointing at objects that are produced outside the class scope. As a result, the aggregate class typically takes the objects which will point to as constructor parameters, or that starts empty and the sub objects will be added later by either operators or some access functions.

If the class is destroyed, the variable of the reference member or the pointer will be destroyed too, however the subclass objects will not be destroyed they will still exist, the reason is that the subclass objects exist outside of the class scope, based on (31). For example

#include <string>

using namespace std;
 class Tutor {

private:
 string m_strName;

public:
 Tutor(string strName)
 : m_strName(strName) {

}
 string GetName() { return m_strName; }

};

class Faculity {

private:
 Tutor *m_pcTutor; This Faculity takes just one Tutor

public:
 Faculity(Tutor *pcTutor=NULL)
 : m_pcTutor(pcTutor) {

}

};

int main() {

 Create aTutor outside the the Faculity scope.
 Tutor *pTutor = new Tutor("AlanGoude"); Tutor created.

{

 Create a Faculity and use the constructor parameter to pass

 the Tutor to it.

Faculity cFac(pTutor);

} cFac: out of scope and is destroyed.
 pTutor still exists here because cFac did not destroy it.
 delete pTutor;
 system("pause");

}

pTutor in the above example, is independently created of cFac, after that is passed into cFac’s constructor. The faculty class has used an initialization list for seting the value of m_pcTutorto the pTutor value. The pointer m_pcTutoris destroyed after the destroyed of cFac; note, pTutor is not deallocated, therefore it is still existing.

To sum up the differences between aggregation and composition:

Aggregations:
· Usually uses either pointer variables or reference values to point to an object that is created outside the aggregate class scope.

· Creatingdestroying subclasses is not its responsibility.

· Compositions:

· Usually uses member variables that are normal.

· It will use pointer values, whenever handles automatically allocationdeallocation by the composition class.

· Its responsibility is creationdestruction of subclasses.
The perceptions of aggregation and composition are not mutually limited, and inside the same class possibly it will be assorted freely. It is absolutely feasible to write a class which is responsible to create and destruct of only a number of subclasses. For instance, the class department may possibly to have a teacher and also a name. The most likely thing that the aggregate will add the teacher to the department then would createdestroys independently. On the other hand, the composition is responsible to add the name to the department, then will be created and destroyed with the department.

Creation another hybrid aggregatecomposition system is possible as well, such as wherever an independent sub objects is holds as the aggregate class, it will destroy them if the class exists away of the scope and the range as a composition.

Although aggregates can be really helpful, they are also potentially hazardous. As mentioned many times, if their sub objects are destroyed, aggregates are not responsible for deallocating them. Therefore, when the aggregate is destroyed, and there are not pointers or references available to such sub objects, then these sub objects will cause a real problem which is the leak of memory. So, it is the programmers’ responsibility to make sure that this will not occur. This is by ensuring that whenever the aggregate is destroyed. Other references or pointers to these sub objects must be exist.
Dynamic memory allocation:
According to (32), when designing programs, always cannot determine how much memory is needed before program runs. The array length or the structures number, for example, it is unknown or unidentified until the program executing decides what those values are. In the C++ run time environment a space of memory called the free store is available to handle the allocation of dynamic memory in the run time. Programmers are using operator new to allocate memory from free store and operator delete to release free store memory. The way to use them based on (32) like this:
double* p = new double [8]; creating 8 objects for the double

delete [] p; to delete from the heep

Employee* e = new Employee; creating an objects for Employee class, and calling default constructor.

delete e; to delete

using member function: e->display();

Another thing we need to think about is how to copy the content from any array to another one, both of them are allocated dynamically.
1. Generate a similar data type pointer. (Destination).

2. Allocate an appropriate amount for the destination from the space.

3. Copy the required content that inside the source to the destination.

4. Delete the content of the source. Rid for the old one.

5. Let the pointer (older one) (which is now called source) pointing to the destination.

6. The destination is local, thus it will be gone automatically, after the calling of the function.
For example:

#include <iostream>

using namespace std;

class CAmina {
 int *weigh, *height;
 public:
 CAmina (int,int);
 ~CAmina ();
 int amina ()
 {return (*weigh * *height);}constructor&destructor

};

CAmina::CAmina (int x, int y) {
 weigh = new int;
 height = new int;dynamic memory new
 *weigh = x;
 *height = y;

system("pause");

}

CAmina::~CAmina () {
 delete weigh;
 delete height;dynamic memory delete

system("pause");

}

int main () {
 CAmina health (85,2), healthy (78,3);
 cout << "health amina: " << health.amina() << endl;
 cout << "healthy amina: " << healthy.amina() << endl;
 return 0;
 system("pause");

}

This is the outputs: health amina 170, health amina 234
Inline function:

What is Inline Function?
Based on (34) inline function is a function that called to make inline functions, and then the actual code will be placed in the calling program.
When we need the Inline Function?
Usually, a function call transfers and transports the control from the calling program to the function and when the program execution returns the control again to the calling program after calling the function. These perceptions of function keep the program space and the memory space are used, for that reason the function is saved just in one place also is just executed after it is called. Because registers or many other processes as well have to be saved firstly then the function must be called, such perception of function execution can be consuming of the time.

The additional time that needed with the process of saving are available only for big functions. When the function is small, the programmers might desire to reset the function code inside the calling program to make it executed. These kind of functions are greatest handled via inline functions. In this case, the programmers might be surprising “why no repeats the small code inside the program if this is necessary instead of going for the inline functions?” even though this can achieve the challenge, the trouble because of the clarity loss of the program. When the programmers rewrite the same code several times, then the clarity loss will occur in the whole program. The alternative way is to let the inline functions to reach the similar purpose, with the functions perception.
What will occur if we write the inline function?
Inline functions given the design and the format as any usual function but if it is compiled it will be compiled as inline code. The function is sited individually as inline function, therefore adding readability to the source program. If the program is compiled, the code appears in the function body is recited in the position of function call. General syntax of inline Function is
Inline data type function name (arguments). For instance:

#include <iostream>

using namespace std;

int Amina(int);

void main(){

int a;

cout <<"\n Enter Input Value: ";

cin>>a;

cout<<"\n The Output is: " << Amina(a);

system("pause");

}

inline int Amina(int a1){

return 8*a1;

system("pause");

}

The output for the above code as shown below in the picture is:

Enter Input Value : 5

The output is 40
Reference variables:
According to (35) references allow programmers to create another name for a variable that is using to change, modify and or read the first old data that stored in that variable. This is not be appealing at first time, this is means that if declaring a reference and assigning it as a variable, it will allow to treat the reference accurately although it was the original variable for the reason to access or modify the value of the original variable, even if the new name (reference) is placed within or inside a dissimilar scope. This means that, for example, if making function arguments references, it will successfully have a way to modify the original data that passed through the function. This is slight different from generally performs of C++, wherever the arguments of a function copied through new variables. In addition it will allow reducing dramatically the amount of copying which gets place at the back of the scenes. When declaring variable as reference instead of the normal variable it must have a specific ampersand that is

int& foo=............;. For example:

int a;

int& foo =a;

 foo here is reference to a thus this sets a to 45

foo = 45;

std::cout << a <<std::endl;

The relationship between Reference variables and their pointers is a source of confusion. Because at least due to the fact that C++ is using the & operators for numerous extremely different reasons.

There are a number of purposes for using reference variables as discussed by (36):

1. Reference variables provide a easier syntax to pass pointer parameters.

2. Reference variables stay away from the objects copying.
· Keeps the original updating and not the copy (the common pass by reference).

· For effectiveness purposes, because it stay away from the duplicating cost, big objects on the stack.

· It avoids doing the free of the copy, the original's memory when they share variables that allocated dynamically if the copy destructor is invoked at the routine’s end.
Be aware, the routine of overloading with versions that only dissimilarity is that one is called via value parameter and the other is using calls via references. Call to the diverse routines has the same syntax thus the compiler cannot tell which routine to use. This will lead to the compiler errors.
Pointers:

What are the Pointers?
(37) Stated that the pointers are variables that save a memory address. So, what is a memory address? Each variable is sited under only one position inside the memory of the computer and this single position has also only one unique address, the memory address. In general, variables take values such as 7 or “hi world”, such values will be stored in particular location inside the memory of the computer. Nevertheless, pointers are different, because they take the memory address as their values and they have the ability for “pointing” (thus pointer) to the certain value inside the memory, via using of its related memory address. What is the pointer? Exactly it is a variable which is hold the destination of another variable, function or data, as discussed by (38).
Why the need for pointers?
Based on (37) assigning the address to pointers is helpful for the description of how pointer works. Why do we need pointers if we can access and manipulate variables by only using their declaration name? The ability for accessing directly to the memory via pointers has made C++ language better than other languages such as Visual Basic, C# or Java. Accessing to variables using pointers will lead to high level of effectiveness and flexibility of the code writing instead of accessing by using their memory address. on the other hand, increased in the effectiveness will take its cost, because of using some tools that have low level such as a pointer will lead to intensified complexity in their implementation. The mainly general uses of pointers are:
· To manage the data in the free store.

· To access the data of the class member also the functions.

· To pass variables to functions by reference.
ALU:
Based on (39) basically the CPU consists of four important sections:

Registers that is responsible to store and save the data inside the CPU.

ALU that is responsible to perform any operation of computations.

Busses that are have to connect the different parts of the CPU together.

Control unit that organizes and manages the different CPU parts.

Below is only some information about the ALU.

The ALU [Arithmetic Logic Unit]. The ALU is a grouping of many logic tool and device (That fundamentally means it is built from: OR, NOT GATES, AND. It is the Boolean function implementation).

This is the ALU general diagram for the grouping device (the combinational circuit).

In the underneath diagram, the general combinational logic circuit has two inputs: (data inputs as well as control inputs), with the outputs. Control inputs are responsible to inform the circuit what should do with the inputs of the data? ALU consists of two parts of inputs that are equal 32bits. These two parts are: SRC1 and SRC2 (source 1 and source 2); they are representing the data inputs. The control input is C its job is to informs the ALU which operation to do and to use on that data inputs. The computation results will send to the output (DST) that is 32 bits as well. It has also some others output bits (ST) that are named (status bits). Fundamentally, those bits point to some computation facts. For instance, they can indicate either the outputs are negative, zero and or have an overflow. Status bits are using for branches. And it is possible to ignore them because DST is the main output.

This is a simple code by using ALU

int ALUResult

int X = 4;

int Y = 3;

char *ALUControl = "0001";

if (ALUControl == "0000"

{

ALUresult = X - Y;

}

else (ALUControl == "001)

{

ALUresult = X + Y;

} end if
APPENDEX:
Finally, the code below is illustrating some of the above classes together. This code is based on(41): (Alan Goude, 20092010). Patient3 code. This code for display and print student information such as, first and last names, ID numbers, using constructor, destructor, copy constructur, new, delete, operator overloading and pointer.

 student.h

#include <string.h>

#if !defined (AFX_EMPLOYEE_H__A6F23B18_E13B_476A_81CA_DAE6E6AC6C44__INCLUDED_)

#define AFX_EMPLOYEE_H__A6F23B18_E13B_476A_81CA_DAE6E6AC6C44__INCLUDED_

#if _MSC_VER > 2000

#pragma once

#endif

class Cstudent

{

public:
 void display();
 void print_IDnum();
 void print_names();
 Cstudent(char * fn, char * ln, int en);
 ~Cstudent();

private:
 int student_IDnum;
 char *lastname;
 char *firstname;

};

#endif

 student.cpp

#include "student.h"

#include <iostream>

#include <string.h>

#include <iomanip>

using namespace std;

 Construction and Destruction

Cstudent::Cstudent(char *fn, char *ln, int en)
 : firstname(0), lastname(0), student_IDnum(en)

{

#if DEBUG
 cout << "student constructor" << endl;

#endif
 firstname = new char[strlen(fn) + 1];
 if (firstname == 0)
 {
 cerr << "Out of memory" << endl;
 exit(5);
 }
 strcpy(firstname, fn);
 lastname = new char[strlen(ln) + 1];
 if (lastname == 0)
 {
 cerr << "Out of memory" << endl;
 exit(5);
 }
 strcpy(lastname, fn);

}

Cstudent::~Cstudent()

{

#if DEBUG
 cout << "student destructor" << endl;

#endif
 delete firstname;
 delete lastname;

}

 Printing names

void Cstudent::print_names()

{
 cout << firstname << " " << lastname;

}

 Printing student ID number

void Cstudent::print_IDnum()

