Asynchronous JavaScript and XML

Abstract
The numbers of Web 2.0 users are increasing by large amount as well as number of Web 2.0 attacks. One of the most common technologies use to develop Web 2.0 is Asynchronous JavaScript and XML, or AJAX which is a client-side application running background that enable user to experience a real-time interactive web page. This paper will focus on major attacks pattern in AJAX based application such as cross-site scripting, cross-site request forgery, JavaScript hijacking and prototype hijacking.
1. Introduction
The basic components to provide the rich internet experience of Web 2.0 usually include AJAX that runs on the client-side rather than the traditional server-side script. The features of the social networking depend heavily on technology such as AJAX and JSON [10 and 20]. In order to improve the interaction between user and web application, and decrease the data transmission between server and web browser, the AJAX engine that is written from JavaScript communication between the client-side and server-side. A user is usually unaware that the browser actually maintains a connection with a server by an AJAX Engine.
2. Attack against AJAX
Overall security issues in Web 2.0 have been present by many researchers such as Mehta [9] which states that not only AJAX has weakness but also XML, HTML, JS Array, and other procedure object called by AJAX. Dormann suggests in Lawton [2] that because user-generate content, which is one of the main characteristic of Web 2.0 technologies, requires AJAX or other scripting technologies that can run code, malware, or even worm without any notice of the user.

Most security issues in Web 2.0 are not new but it rather cause by the extensive use of AJAX which rely on other technologies such as XML, DOM, JavaScript.
2.1 Cross-Site Scripting
Cross-Site Scripting (XSS), one of the HTML/Script injection, concept is to make the user run a malicious script on their browser by making as if the script comes from trusted web site. The inability to check the user input before sending it to the any web browser is the cause of XSS. The need of using AJAX in Web 2.0 forces the user to allow script to run on their browser. With weak security architecture and script-enable scenario, Web 2.0 is seriously open to XSS exploits [4, 12, and 13]. There are two type of XSS exploit: Reflected and Stored.
2.1.1 Reflected XSS
The most common type of XSS is Reflected XSS or non-persistent XSS, which exploit are those where the malicious code is reflected from the web server and the echo message is returned, then the browser will execute the attack script in the target's browser and gain control over victim's browser [1 and 3]. This type of attack is usually associated with other social engineering techniques to lure people to click on link to the page with embedded script.
2.1.2 Stored XSS
Store XSS or persistent XSS refers to the situation when the scripts are injected and then stored in to a persistence source [1 and 3]. Blog, wiki, forum usually vulnerable to stored XSS since the malicious scripts are stored in the database and the script ready to attack whenever the page is loaded.
2.1.3 DOM based XSS
The other XSS exploit that less known is DOM (Document Object Model) based XSS attack [14]. The attack scripts are sent through local object in the DOM, the browser will then construct the HTML from the object without convert this information by HTML entity. The code embedded will be executed when the webpage is loaded.
2.1.4 Protect against XSS attacks
One approach to protect against XSS attack is client side protection. In [24] the Noxes, the client-side protection against XSS attacks, is presented. Noxes is a personnel web firewall that acts as a web proxy which will automate rule for protect against XSS attacks but still lack of SSL support. Another example of solution to stop XSS exploits on the client side is given by [19] which will monitor the flow of data sent to outside, the user can allow or block the information. This will add more security to the web surfing without depending on the security of the web application. The client side protection seem to be more flexible solution for protection against XSS since not all the XSS vulnerable can be fix by the server side on time.

Server side protection is another approach to protect against XSS. In [26], the server-side detector will detect the intruder by analyze the log then create the rule to compare the requests. The server side static analysis technique is used in [21]. The false warnings are removed by comparing the static technique with the dynamic result. Disable the script when not use is another way to protect against XSS attacks, but the HTML injection technique can still attack the clients' web browser. A personal caution is also a good way to protect against XSS vulnerability. For example links from the untrusted websites should be ignored. If the user wants to input the credential information says a bank website, one should access the website directly rather than follow a link from email or other site.
2.2 Cross-Site Request Forgery
Cross-Site Request Forgery attacks (CSRF) are successful when the unwanted code is executed at a user's web browser on a trusted site. Noureddine and Damodaran [4] mention that Web 2.0 raise the issue off CSRF since AJAX requests is not directly affect the visual effect therefore it is easier for the attacker to hide forged requests. Metha [9] also gives an idea that AJAX or Web services can be invoked by CSRF requests. The other papers talking about CSRF exploit in Web 2.0 are [7], Frankel [5], and Lawton [2].
Burns [3] has identified the distinction between XSS and CSRF like this.
"In the case of an XSS flaw, an attacker exploits a lack of input and / or output filtering. If a change to the application that filters out dangerous characters like <, >, ", ', &, ;, or # could resolve the flaw, then it is not an CSRF issue but a XSS issue. CSRF is about the predictability of the structure of the application. XSS is related to the application performing insufficient data validation."

XSS need JavaScript to attack but CSRF can attack without JavaScript. In CSRF, malicious code can be located on the other sites (not the trusted sites), so the protection of XSS cannot prevent against CSRF.
2.2.1 Reflected CSRF
The attacker can achieve a reflected CSRF exploit by making a user visits a site that belong to the attacker or contain a hidden script which will exploit the user's trust in the target site [1, 3]. Reflected CSRF attacks will not work if the user does not logged on the target site before the attack begin (click the link). It is hard to track the origin of the attack because the attacker can delete the trail once the attack finish.
2.2.2 Stored CSRF
A stored CSRF is more likely to success since the user will enter the infected link while the authentication to the target site is active since the like provided by the hacker will be shown on the target site. Because the attacker has to inject the script into the target website, the trail is easier to trace.
2.2.3 Protect against CSRF attacks
Since less people aware of CSRF attack, not much research has been done on this topic, but this does not mean that CSRF exploits are less danger than XSS attacks. Burn [3] has suggested five approaches of protection, the concept of those approaches are: Verify the request before execution any request; to perform changes to the state of the application such as creating, updating, or deleting of objects should be done with HTTP POST operations.

The observations on efficiency of CSRF protection technique are composed by Barth et al [21]. They suggest that the header (use cryptographic) is one of the reliable protections, but in the near future the browser also should implement the "Origin" header and "Referrer" header.
2.3 New AJAX vulnerabilities

2.3.1 Prototype Hijacking
Di Paola and Fedon [16] present a new technique of exploit AJAX. It is called Prototype Hijacking which the attack focuses on the exploit of prototype property in JavaScript which is the Same Origin Policy.

The new object method of the Prototype Language such can be called by anyone and it is possible for the hacker to inject XSS attack and take control any method and attribute. The example in the paper is once the attacker injects the code he/she will just wait for any bank transaction and then call the same object to redirect requests and responses to him/her.
2.3.2 JavaScript Hijacking
A JavaScript Hijacking is found by Chess et al. [6], the concept is that even letter X in AJAX means XML but in practice HTML, text, or JavaScript (JSON) can be use to send data. JavaScript does not have "Same Origin Policy [22]" as XML does which give an attacker to access the credential data. Because JavaScript sometime is used as data transportation in Web 2.0 therefore the attacker can bypass the Same Origin Policy to take the advantage of loophole by observes the data inside the JavaScript.

To defend against JavaScript Hijacking the first condition that has to be fulfilled is make sure there is no XSS vulnerability since it will allow the hacker to run JavaScript through target site but even there is no XSS vulnerability it cannot guarantee that there is no JavaScript Hijacking vulnerability.

There two ways to protect against JavaScript Hijacking as suggest in [6] are:
1. Reject any Malicious Requests - The same reason as in protecting against CSRF which is the same in server perspective.

2. Defense direct execution of the JavaScript response - e.g. modify data by including prefix or/and suffix to make it unable to execute JavaScript
By adopting these two solutions will give the most security.
3. Summary
AJAX is the key technology that makes a user to experience rich-internet application in Web 2.0 by increase the capability of interaction between server-side and client-side. In the same time the application is more complex and then the security issue raise.

One way to solve these problems is to design the appropriate web application. It should verify requests and inputs that come from browser and check if they have attack code in the data. The other way is changing the way session is used by changing cookie to others because both CSRF and JavaScript Hijacking both use cookie to get user thrust or authentication.

Because AJAX is based on other technologies such as JavaScript, JSON, XML, and ASP.NET, the problem which occur in the particular technology will then appear in AJAX too. A new type of attack such as prototype hijacking is still not known by public therefore the security gap is open for the hackers to attack. The solutions that have been done so far are only increasing web browser or server security which is not efficient because of the complexity of feature using in each website.

