Analysis on source code
Performance Measurement Analysis on Source Code between Object Oriented Inheritance and Interface Concepts Using CK Metrics
Abstract
It is widely acknowledged that in software engineering, the usage of metrics at the initial phases of the object oriented software can help designers to make better decisions. Following this innovative thinking, two widely used concepts of object oriented programming, inheritance and interfaces have been taken to predict the best performance between them. Two program examples for each concept are taken and the performance is measured through CK metrics. The six CK metrics are applied to all examples and the values for each metric are compared. For each metric the value is reduced for object oriented interfaces compared to inheritance concept.

Keywords: CK metrics, measurement, metrics.
Introduction
Software engineering metrics are important measurements for project planning and project measurements. The increasing importance of software measurement and metrics led to the development of new software measures and metrics. Many metrics have been proposed for traditional programming and object oriented programming. The increased demand for the software quality has resulted in higher quality software and quality is the main differentiator between the software products nowadays. Nowadays software measurement plays an important role for measuring quality and complexity of software. This paper presents a software measurement made by using CK metrics. [11][12][13]
Measurement and Metrics
Nowadays, software engineering is one of the most important technologies in the world. As computer software has grown, software developers have continually attempted to develop new technologies with some of them focused on object oriented technologies [19]. In this paper object oriented class inheritance are differentiated with object oriented interface through complexity measures.

If you cannot measure its not Engineering Community is often said by the engineering community. [6]

The key factor for any engineering discipline is measurement. Without measurement or metrics it is impossible to measure quality and complexity to detect problems before it is released. So measurement is very important in managing the software projects. [1][17][20][24]
METRICS
Metrics are used as a powerful tool in software research, maintenance and development for estimating cost, effort, complexity, quality, maintenance and to control etc[5]. Metrics serves as an early warning tool for potential problems happening in software development [20]. Any metrics must be defined as a complete and well designed quality improvement paradigm (QIP) [2]. According to QIP in this paper CK-metrics are improved in interfaces compared to class inheritance diagram.
Traditional Metrics
From 1976 traditional metrics have been used in software measures for measuring the software complexity. Metrics are used as a controlling method in development. The metrics are used to measure either the process of development or various aspects of the product [7][10][23].
Cyclomatic complexity [CC]:
Cyclomatic Complexity is found by counting the number of decision points in the method. A high value of cyclomatic complexity indicates that the quality of the code might be low.
Source Lines of Code:
This metric counts the number of lines in the code/program. This metric is the simplest and easiest approach to measure complexity.
Comment Percentage:
Comment percentage is calculated by finding the ratio of total number of comments by total lines of code minus the number of blank lines. A high value of CP facilitates in maintaining the system.
Object Oriented Metrics
Metrics are very essential and important to measure object oriented software programming. The development of software metrics for object oriented technology/programming has received more attention [5] [16].
BACKGROUND
Metrics Used In This Study
One of the most widely used set of object oriented software metrics has been proposed by Chidamber and Kemerer referred to as the CK metrics suite. CK have proposed six class-based design metrics for object oriented programming/systems. [19]
Weighted Methods per Class(WMC)
WMC is simply the method count for a class.

WMC = Number of methods defined in class. WMC measures the complexity of the class. Two different approaches are used to measure the WMC metric.
1. The first method uses the sum of the complexity of each method contained in the class.

2. The second method assigns a complexity of 1 to each method in the class and then sums the result. This is equivalent to number of methods defined in the class.
The number of methods and complexity of methods are used to measure how much time and effort is required to develop and maintain the class.

A high WMC leads to more faults. Classes with many methods are likely to be application specific and it will limit the reusability of classes. Because of all the above said reasons WMC should be kept as low as possible [18] [19] [21] [22].
Depth of Inheritance Tree of a Class (DIT)
DIT is defined as the length of the longest path of inheritance ending at the current module.

DIT= maximum inheritance path from the class to the root class.

The deeper the class in the hierarchy, the lower level classes inherit more methods and variables, making it more complex. The deeper trees will also indicate greater design complexity. The deeper the inheritance trees the harder it is to find its behaviour due to its interaction between the inherited and new features. A high DIT will increase faults. The advantage of deeper trees is that it will increase/promote reuse because of method inheritance.
Number of Children (NOC)
NOC equals the number of immediate child/sub classes derived or subordinated from a base class. The subclasses that are subordinate to a class in the class hierarchy are called as its children.

NOC and DIT are closely related. NOC measures the breadth in class hierarchy where as DIT measures the depth in class hierarchy. Inheritance levels can be added to increase and decrease the depth and breadth.

A high value in NOC i.e. a large number of child classes as the number of children grows indicates,
1. High reuse of base class

2. Base class may require more testing

3. Improper abstraction of the parent class/ the abstraction presented by the parent class can be diluted.
A class with high NOC and high WMC indicates complexity at the top of class hierarchy [18] [19] [21] [22].
Coupling Between Objects (CBO)
CBO is defined as the count of the number of other classes to which it is coupled.

CBO= Number of classes to which a class is coupled.

A class is coupled with another class when a class is using the member method and/or instance variables of another class. The more independent class is easier to reuse. High value of CBO is undesirable and also indicates that more faults might be there due to inter-class activities.

Excessive coupling between object classes is harmful for modular design and it prevents reuse. It also indicates weakness of class encapsulation and may restrain reuse [9] [18] [21].
Response for a Class (RFC)
The response set of a class is defined as, a set of methods that can potentially be executed in response to a message received by an object of that class [3] [18] [19]. It is simply the number of methods in the set. A large value of RFC indicates more faults. Classes with high RFC become more complex and harder to understand. If large numbers of methods are invoked by a class in response to a message, the testing and debugging of the class becomes more complicated because it requires a greater level of understanding [18][21].
Lack of Cohesion in Methods(LOCM/LCOM)
LCOM is the number of methods that access one or more of the same attributes/instance variables [4]. If no methods access the same attributes/instance variables in the class, then LOCM = 0.

LOCM = number of methods whose similarity is zero the number of methods whose similarity is non zero. When the number of similar methods in a class is larger, the class is more cohesive [3] [18]. High value of LCOM indicates methods may be coupled to one another through attributes and it increases the complexity of a class. So LCOM should be kept low [18] [19].
SOFTWARE EXAMINED
Inheritance is one of the initial features of object oriented programming. Through inheritance a derived class receives the attributes and methods of the base class. The relationship between derived and base class is referred as is-a/is-a-kind-of. Inheritance feature create a class hierarchy. [8]

Software engineering has been using interfaces for more than 25 years. With interface construct, object oriented programming features a good concept with high potential code reusability. Interfaces in object oriented programming just contain names and signatures of methods and attributes, but no method implementations [14]. Interfaces are used to organize code and provide a solid boundary between the different levels of abstraction [4] [15].

Two Software programs, vehicle and shapes hierarchy are taken to analyse the above said two concepts. Firstly the above said two programs are completely developed using java language. The same two programs are introduced with possible number of interfaces and are also developed in java language.
SOFTWARE TOOL USED
Several commercial tools are available to implement and measure CK metrics. In this paper the ckjm-1.9 metric tool is used. It is a flexible and effective tool for calculating Chidamber and Kemerer metric suite for object oriented programming. These metric values are calculated by processing the byte code of compiled java files. The tool calculates all six metrics WMC, DIT, NOC, CBO, RFC and LCOM of CK metric suite.
ANALYSIS METHOD USED
The study examined with one metric suite is performed over two examples. First the metric is selected from object oriented metric category for measuring the properties of the software. CK are the first people who have introduced object oriented metrics and these are the only metrics which will measure the program in all the properties like number of methods, inheritance, number of children, coupling between objects, response for a class and lack of cohesion methods.

Finally the two models have been developed using java language for two different concepts. These two models are introduced with possible interfaces which are also developed using java language.
Goal Statement and Research Hypotheses
Two examples and two hypotheses are used to test the goal.

Goal: Performance measurement between the usage of object oriented inheritance and interface concepts in object oriented programming environment.

Hypothesis1: Object Oriented Metrics are used to identify the better quality and economic software in object oriented programming.

Hypothesis 2: Memory and number of lines are two new metrics used to measure the performance of two concepts in object oriented programming.
Methodology
1. The Ck Metric suite is applied on two different examples of two different concepts.

2. The values are tabulated.

3. The tabulated values are compared.

4. The number of lines and memory occupied by the two examples are calculated for the two concepts.

5. Finally the values are compared for predicting the better performance of software.

6. Results & Discussions
The results are compared between the two concepts in two ways.
· CK Metrics Suite analysis

· Memory and size analysis
Using CK Metric Analysis
Two software programs, vehicle and shapes are taken as examples for object oriented inheritance concepts. The CK metrics are measured for the vehicle and shapes and the values are given in table 1. The programs are then introduced with possible number of interfaces. The CK metrics are measured for the above said programs with interfaces. The two concept values are compared. All the values except CBO is reduced for interface concepts.

The results are compared between the two concepts and discussed below:
1. Weighted Methods per class metric is reduced in interface concept compared to inheritance concept. So, the potential reusability of the class is diluted.

2. Depth of inheritance tree is reduced for the second example thus the design complexity is reduced.

3. The number of children metric value for the interface concept is reduced thus the amount of testing will be reduced for the software. Abstraction of the parent class is increased.

4. The coupling between the object classes is increased for the interface concept thus the reusability of the class is reduced and testing will be difficult.

5. Response for a class is reduced for interface concept thus the testing effort, test sequence and overall design complexity of the class is reduced.

6. Lack of cohesion of method metric value is reduced thus the complexity of the class design is decreased.
Memory & Size Analysis
Memory is measured in terms of bytes. The size is measured in terms of number of lines.

The number of lines and memory are measured for the above said two examples. The number of lines and memory are reduced for the concept of interfaces compared to inheritance concept. Introduction of interfaces in object oriented programming in possible places is better for producing good quality and economic software.
Conclusion
All the metrics for CK metrics except coupling between objects are reduced for the concept of interfaces. Excessive coupling between object classes will prevent reusability. For the inheritance concepts the value of CBO is slightly high when compared to interface concept in object oriented programming. In all other metrics, the values are reduced for the programs using interface concepts. The CK metric values show that using interfaces in the appropriate places will produce the software with reduction in cost, testing effort and complexity in object oriented programming. Measuring the number lines and memory usage also are reduced in interface concept in object oriented programming. The usage of interfaces will avoid consuming time, reduce economy and result in good quality also.
References
1. Agarwal K.K.,Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,Emprical Study of Object-Oriented Metrics, Journal of Object Technology, Vol. 5, Nov-Dec 2006.

2. Carlo Ghezzi, Mehdi Jazayeri, Dino Manddrioli,Fundamentals of software Engineering, P.No: 366, 2nd Edition, Prentice Hall India, 2003.

3. Chidamber. S.R. and C.F. Kemrer, A metrics suite for Object Oriented Design, IEEE Trans. Software Engineering, Vol. SE-20, No. 6, P.No:476-493.

4. Dirk Riehle and Erica Dubach,Working With Java Interfaces and Classes-How to Separate Interfaces from Implementations, P.No:35-46, Published in Java Report 4, 1999.

5. El Hachemi Alikacem, Houari A. Sahraoui, Generic Metric Extraction Framework,IWSM/Metrickon, Software Measurement Conference 2006.

6. Ivar Jacobson, Magnus Christerson, Patrick Johnson, Gunnar OverGarrd,Object Oriented Software Engineering-A Use Case Driven Approach, P.NO:468, Pearson Education @ 2001.

7. Ivar Jacobson, Magnus Christerson, Patrick Johnson, Gunnar OverGarrd,Object Oriented Software Engineering-A Use Case Driven Approach, P.NO:468, Pearson Education @ 2001.

8. Ken Pugh, Interface Oriented Design, Chapter 5, 2005, the Pragmatic Programmers, LLC.

9. Lionel C. Briand, John W. Daly and Jurgen Werst, A unified Framework for Coupling Measurement in Object-Oriented Systems, Fraunhofer Institute of Experimental Software Engineering, Kaiserslautern, Germany,1996.

10. Madumathi I. & B.Palaniappan,A Tool for Extracting Object Oriented Metrics,International Journal of Computing and Applications ,2007.

11. Manso M., Genero M. and Piattini M.,No-Redundant Metrics for UML Class Diagram Structural Complexity, Advanced System Engineering, LNCS 2681, P.No: 127-142, Springer 2003.

12. Marcela Genero, Mario Piattini and Coral Calero, A Survey of Metrics for UML Diagrams, Journal of Object Technology, P.No: 55-92, Vol. 4, No. 9, Nov-Dec 2005.Marcela Genero, Mario Piattini and Coral Calero, Empirical Validation of Class Diagram Metrics, Proceedings of the 2002 International Symposium on Emprical Software Engineering (ISESE02) @ 2002 IEEE.
13. Markus Mohenen,Interfaces with Default Implementations in Java, Aachen University of Technology.

14. Matthew Cochran,Coding Better: Using Classes Vs. Interfaces, January 18th, 2009.

15. Neville I. Churcher, Martin J. Sheppered, ACM Software Engineering Notes, Vol.20, Issue 2, P.No:69-75, April 1995.

16. Norman E. Fenton, Shari Lawrence Pfleeger,Software Metrics A Rigorous & Practical Approach, 2nd Edition.

17. Pradeep Kumar Bhatia and Rajbeer Mann, An Approach to Measure Software Reusability of OO Design, Proceedings of 2nd National Conference on Challenges & Opportunities in Information Technology (COIT-2008)RIMT-IET,MandiGopindargh,March 29,2008.

18. Roger S. Pressman,Software Engineering a Practitioners Approach, 6th Edition.

19. Stephen R. Schach, Object Oriented and Classical Engineering, 5th Edition,Tata McGraw Hill,2002.

20. Shyam R. Chidamber, Chris F. Kemerer,A Metrics Suite For Object Oriented Design , M.I.T.,Sloan School of Management, E53-315.

21. Victor Basili, Lionel Briand and Walcelio Melo,A Validation of Object-Oriented Design Metrics as Quality Indicators, IEEE Transactions on Software Engineering, Vol.22, and No: 10, October 1995.

22. Victor Laing and Charles Coleman,Principal Components of Orthoganal Object-Oriented Metrics, Nov.20th 2008, SATC

23. Watts S. Humphery,A discipline for Software Engineering, SEI Series in Software Engineering, P.No:209-210, Pearson Education Asia, 2001.
