An optimised messaging framework for mobile web service clients

An Optimised Messaging Framework for Mobile Web Service Clients

1.0 Introduction
Mobile computing and communication has created an environment that supports anytime and anywhere access to services and information, irrespective of devices type and networks. Most of the services designed for fixed networks are now being extended to provide support for mobility. This task is not an easy one, given the numerous constraints imposed by the use of handheld devices like smartphones or PDAs. On the one hand the wireless networks have small bandwidth, temporary disconnections, high latency and on the other hand, the devices have limited power, low processing capabilities and restricted memory.

Web Services provide a loosely coupled infrastructure for service description, discovery and execution. They can be considered as software components that can be accessed through standard-based protocols in a distributed network. Over the past few years, we have noticed an increasing number of web services appearing on the Internet. The ubiquity of XML (Extended Markup Language) is a major component in the web services adoption. SOAP, an XML derivative, provides a standardised mechanism for heterogeneous information systems and allows applications to communicate with each other regardless of their implementation language and operating platforms. This mechanism therefore seems to be a good candidate to bridge the gap between the different types of mobile devices and platforms that forms part of the mobile computing environment. Several frameworks have been proposed in the literature [1, 2].

Despite its benefits, the verbose nature of the XML-based SOAP messaging creates overheads for mobile devices. This derives from the fact that it was designed to be accessed by fixed computers rather than constrained mobile devices. In the conventional SOAP messaging the bottleneck has often been observed in the SOAP parsing and serialisation, which involves different stages of processing and is computationally intensive. For example, in-memory representation of a floating point number has to be converted from and to textual format of the SOAP message, and this is an expensive process for limited mobile devices. Web services favours coarse-grain interaction patterns, the message thus includes large date sets enclosed between descriptive tags which becomes another problem for the low bandwidth wireless networks. Binary XML has been proposed an alternative to textual SOAP messages for constrained environments [3]. There exists several implementations of the W3C specification, and so far none has been adopted for general use [4].

In this paper we propose an architecture that improves performance of message exchange in a mobile web service environment. It is based on the nature of SOAP messages and separates the context from the actual message. The message is sent in a binary XML format representation to the service endpoint. In case the service endpoint does not have the necessary components to handle the binary format, then both the mobile client and the service provide settle on using SOAP for communication.

This paper is organised as follows. In section 2 we provide an overview of related work performed in the area of performance improvement for SOAP communication in mobile web services. In section 3 we present an overview of the proposed architecture and section 4 deals with the current implementation issues since this is still a research in progress. Finally in section 5 we conclude and present our way forward.
2.0 Related Work
The attempt to increase performance of SOAP communication has been very important in the field of Web Services. The XML nature of SOAP messages is at the heart of the performance bottleneck for Web Services. This section provides an investigation of the related work on performance considerations for SOAP messages both in the wired and wireless context. We have identified that the different solutions can be classified in three different perspectives: compression techniques, efficient parsing and serialisation and binary XML.
2.1 Compression Techniques
XML documents are very good candidates for compression since they consist of a relatively high degree of textual redundancy. XML documents also have a structure, which has been exploited by XMill [5]. The latter achieved better compression ratio by grouping related data items like elements with the same name, and applying different compressors for different groups. Cheney [6] futher improved the compression ratio of XMill, by using a technique called Multiplexed Hierarchical Modelling (MHM), based on the PPM technique of Cleary et al [7].

Compression of XML documents indeed reduces their size, but increases their processing time. This is mainly because compression adds another layer of processing which is the compression and decompression. This solution greatly reduces the size of the message for bandwidth consumption, but deteriorates power consumption by imposing a high level of processing. Also, when we consider XML messaging in terms of SOAP, the documents are small and contain more structural information instead of text. Hence, XML compression techniques so far can not really improve on performance, especially for resource constrained mobile devices.
2.2 Parsing and Serialisation Techniques
Abu-Gazaleh et al [8] used a technique known as differential serialisation that tracks changes and overwrites only values that have changed since last SOAP message sent. Their technique is based on the observation that a web service client sends several messages to the same service endpoint, and that the structure of the messages had close resemblance. Takase et al [9] used the same technique but instead of just storing checksums of the message, used a full byte sequence and applied deterministic finite automaton that matches byte sequences and output SAX events.

Such techniques only proves to be effective when the XML documents are very similar to each other. This means that when they respect a schema or DTD. But none of these solutions can process schemas, they work by directly extracting information form the documents during processing. This comes down to re-building the schema, which is not totally appropriate for resource constraint devices.
2.3 Binary XML Techniques
In the case of mobile computing, binary XML seems to be more appropriate since it is and XML format that can be directly read and written in a streaming manner. The description of the potential overheads in XML processing for devices with limited memory, limited processing power, and a limited battery life is described in the W3C's document [9], which recommends use of binary XML. Binary XML techniques can roughly be divided into firstly Infoset based, which is more appropriate for any XML data and secondly, schema-based which requires information on the schema which the document is based upon [10]. Binary XML is based on tokenization, which replaces recurring texts by a short integer, much like a compression techniques. This provides a reduced size and improved processing speed as string manipulation has been discarded.

Chiu et al [12] have implemented the BXSA format, Binary XML for Scientific Applications by extending the XML infoset model. They have measured the BXSA to perform well in comparison with other scientific data formats. Fast Infoset (FI) [13] is a well know format that represents XML infoset using the ASN.1 schema[14]. By using the tokenization technique, FI allows for strings and qualified names indexing, which is a big advantage. The state of the indexing can be preserved between documents, which is very useful for streams containing similar messages. There are several other formats that have been designed, but none of them has been generalized into a standard for XML processing. We favour the use of binary XML since it provides a mechanism to save as high as a factor of ten if the message structure is especially redundant (e.g. an array), and single text elements can have their size reduced by half [15].
3.0 The architecture
Figure 1 below depicts a general outline of our approach. The proposed framework consist of a mobile user, in this case we consider smartphones to be high class mobile devices, which uses a web service. The key design objective behind the framework is to provide optimised messaging between the mobile client and the service endpoint in an attempt to alleviate the burden of text processing on small devices. Binary XML is at the heart of this framework, providing a smaller message size and less processing. Message transmission time is reduced and a considerable gain is achieved over high latency, slow wireless networks with smaller messages. Also, a proper binary XML format reduces parsing and serialisation of the message. At a high-level point of view, it can be seen that messages can be sent using binary format which is smaller in size and requires less processing power and hence less battery life on the mobile device. The framework also allows static metadata information (context data) to be separated from each request and response and the parser on the service provider side allows for multiple Binary XML formats. The SOAP handler provides graceful degradation in case the client and the server cannot settle on stream communication over a binary format.
3.1 Format Factory
As it can be depicted in Figure 1, the format factory has been designed to process either SOAP messages or binary XML. It can be considered as a package consisting of the minimal parser functionalities. There is an initial interaction between the mobile client and the web service endpoint over SOAP messages. The main aim behind this initial interaction is to settle on a binary format which will be used for communication, since both the client and the service provider should be capable. In case they are not able to settle on a specific binary specification, the system gracefully degrades to the normal usage of SOAP messages. In our scenario, a mobile client will use a standardised binary XML format, but in reality this not really the case, since multiple specifications are in use. Hence, we provide a layered approach, where the service provider's parser can handle different binary XML formats and the client can handle only one binary format or SOAP. This decision improves on efficiency at the client side.
3.1.1 Service Provider's Parser
The modular approach we have adopted helps the parser component to provide only basic functionalities which are used and extended by the upper layers. Hence the real parsers would be the SOAP handler or the binary XML handler(s). We have embedded only a minimal set of functionalities in the Format Factory layer. Figure 2 below depicts the different handlers that can be implemented on top of the Format Factory. The more the number of formats, the more scalable the service can be. We acknowledge that this functionality can be isolated on another web service. In this case, a service provider which does not support the binary format of the client can make a call to a transformation web service to transform the request. This avenue will not be considered in the scope of this paper.
3.1.2 Client Side Parser
In an attempt to provide a scalable and efficient system, the client supports one binary format like Fast Infoset. In case the service provider cannot process Fast Infoset, then the client falls back to the usage of SOAP messages. Fast Infoset provides more efficient serialization than the text-based SOAP format. The process of converting non-textual data into text format and vice versa is eliminated. This expensive process relieves the low-powered mobile device. Our approach is based on the W3C recommendation of using infoset based approach rather than the schema based approach [4]. This implies that we do not have to keep track of a schema, which itself can impose more memory requirements on the device.
3.2 Context Store
A SOAP message consist of an additional layer known as the envelope, which contains additional headers, and inside the envelope there is a SOAP header and a SOAP body. The header is of particular interest in our research. It is used to convey additional information which is not included in the body of the message. Since messages between a mobile client and a web service can be very similar in nature, it can be deduced that the headers will rarely change. The framework is based on this principal, and each message is decomposed into a header with context information and the payload which represents the actual data or operation. All contextual data is stored at the service provider end. A context handler on the mobile deice is responsible for updating the context store each time a new set of static information is generated. When a new message arrives, the context can be referenced directly. The client and the server can reference static information by sending a special request on the server.

The Context Store consists of a Context Manager component which is implemented to support contexts that are passed by reference. Hence, the unchanging headers are stored and referenced in each message. This feature is based on the WS-Context approach [16].
4.0 Implementation
This work is still at its infancy, since the main components are still being designed. We are actually focusing on the context store, i.e. separating static information from dynamic in the communication. We will then provide implementation of a client with Fast Infoset [17], and the Fast Infoset handler on the service provider side. Eventually we will be carrying performance tests so as to confirm the hypothesis that binary XML based on our framework is optimised for mobile clients.
5.0 Conclusion
We are investigating a new messaging approach based on the binary XML specification of the W3C. This approach will be materialised in a system that provides an optimised exchange of messages for mobile web service clients. The framework divides each message into a context and a payload. All unchanging context information are not sent, this reduces the message size. Binary XML format is different from the conventional SOAP parsing and serialisation. Binary serialization format has been designed to be compatible with XML and can be written and read directly without going through XML in between. Hence it is more efficient and requires fewer resources. Mobile clients can therefore participate completely in web service interactions. This will eventually give rise to a set of new breed of applications, for e.g. in the field of m-commerce. The practical implications are manifold, since web services is being used to implement the service oriented architecture, which is actually the solution to decades of problems as far as interoperability is concerned in distributed computing.
6.0 References
1. Schall, D.; Gombotz, R.; Dorn, C.; Dustdar, S. Human Interactions in Dynamic Environments through Mobile Web Services, IEEE International Conference on Web Services, ICWS 2007, 9-13 July 2007 Page(s):912 - 919

2. Elena Sanchez-Nielsen, Sandra Martin-Ruiz, Jorge Rodriguez-Pedrianes An open and dynamical service oriented architecture for supporting mobile services. Proceedings of the 6th international conference on Web engineering, Pages: 121 - 128,2006

3. World Wide Web Consortium, "Report from the W3C Workshop on Binary Interchange of XML Information Item Sets", Sep 2003. Available from http://www.w3.org/2003/08/binary-interchange-workshop/

4. World Wide Web Consotium, "XML Information Set", http://www.w3.org/TR/XML-infoset/

5. H. Liefke,"XMill: An Efficient Compressor for XML Data," Proc.ACM SIGMOD Conf. on Management of Data, ACM Press, 2000, pp. 153-164.

6. Cheney, J. Compressing XML with multiplexed hierarchical PPM models. In Data Compression Conference, Mar. 2001, pp. 163-172.

7. Cleary, J. G. and Witten, I. H., Data compression using adaptive coding and partial string matching. IEEE Transactions on Communications, 32(4), Apr. 1984, pp. 396-402.

8. Takase, T., Miyashita, H., Suzumura, T., and Tatsubori, M. An adaptive, fast, and safe XML parser based on byte sequences memorization. In A. Ellis and T. Hagino (Eds.), Proceedings of the 14th International World Wide Web Conference, May 2005, pp. 692-701.

9. M. Cokus, "XML Binary Characterization Use Cases," W3C Working Draft, March 2005.

10. Pericas-Geertsen, S. (Dec. 2003). Binary interchange of XML Infosets. In XML Conference and Exposition.

