An object that groups multiple

Collections Framework
Introduction:- Acollection- sometimes called a container - is simply an object that groups multiple elements into a single unit. Collections are used to store, retrieve, manipulate, and communicate aggregate data.
· collection (lowercase c), which represents any of the data structure in which objects are stored and iterated over.

· Collection (capital C), which is actually the java. util . Collection interface from which Set, list and Queue extend. (That is right, extend, not implement. There are no direct implementations of Collection.)

· Collections (capital C and ends with s) is the java .util. Collections class that holds a pile of static utility methods for use with collections.
The collections framework was designed to meet several goals.
1. The framework had to be high-performance. The implementations for the fundamental collections (dynamic arrays, linked lists, trees, and hash tables) are highly efficient.

2. The framework had to allow different types of collections to work in a similar manner and with a high degree of interoperability.

3. Extending and/or adapting a collection had to be easy.
A collections framework is a unified architecture for representing and manipulating collections. All collections frameworks contain the following:
1. Interfaces: These are abstract data types that represent collections. Interfaces allow collections to be manipulated independently of the details of their representation. In object-oriented languages, interfaces generally form a hierarchy.
2. Implementations i.e. Classes: These are the concrete implementations of the collection interfaces. In essence, they are reusable data structures.
3. Algorithms: These are the methods that perform useful computations, such as searching and sorting, on objects that implement collection interfaces. The algorithms are said to be polymorphic: that is, the same method can be used on many different implementations of the appropriate collection interface.
Collections come in four basic flavors:
· List: List of things (classes that implements List).

· Set: Unique things (classes that implement Set).

· Maps: Things with a unique ID (classes that implement Map).

· Queue: Things arranged by the order in which they are to be processed.
The Collection interface:- This enables you to work with groups of objects; it is at the top of the collections hierarchy. The Collection interface is the foundation upon which the collections framework is built. It declares the core methods that all collections will have. These methods are summarized in the following table.

Methods with Description:-
1. boolean add(object obj):- Adds obj to the invoking collection. Returns true if obj was added to the collection .Returns false if obj is already a member of the collection, or if the collection does not allow duplicates.

2. boolean addAll(Collection c):- Adds all the elements of c to the invoking collection. Returns true if the operation succeeded (i.e., the elements were added). Otherwise, returns false.

3. void clear():- Removes all elements from the invoking collection.

4. boolean contains(Objects obj):- Returns true if obj is an element of the invoking collection. Otherwise, returns false.

5. boolean equals(Objects obj):- Returns true if the invoking collection and obj are equal. Otherwise, returns false.

6. Int hashCode()- Returns the hash code for the invoking collection.

7. boolean is Empty():- Returns true if the invoking collection is empty. Otherwise, returns false.

8. Iterator iterator():- Returns an iterator for the invoking collection.

9. boolean remove(Object obj):- Removes one instance of obj from the invoking collection. Returns true if the element was removed. Otherwise, returns false.

10. boolean removeAll(Collection c):- Removes all elements of c from the invoking collection. Returns true if the collection changed (i.e., elements were removed). Otherwise, returns false.

11. Boolean retainAll(Collection c):- Removes all elements from the invoking collection except those in c. Returns true if the collection changed (i.e., elements were removed). Otherwise, returns false.

12. int size():- Returns the number of elements held in the invoking collection.

