Agent-based Systems

1.1. Overview
The real world is a dynamic place where things change in an unexpected way. The software must be able to adapt these changes to work efficiently in the real world. This complexity can be characterized as robustness, flexibility, reactivity, and pro-activeness. The modeling, design, implementation, verification and maintenance of complex distributed systems require to be decomposed into various independent small entities. These entities can be viewed as an agent, which provides a simple way to understand such complex entities.

Agent-based approach can be considered the very next step in the growth of software engineering [1]. The innovation of autonomous agent and multi-agent approach is one of the remarkable inventions of the last two decades in the computer science community. Agents are being adopted as a new theoretical approach to model the complex distributed systems [2]. A large number of distributed and complex software systems can be viewed as autonomous agents.
1.2. Agent
An agent also called a soft boot or an intelligent agent is a part of autonomous software. The word intelligent and agent describes some of their features and characteristics. Agent gives some information about the purpose of the software, and the word intelligent is used because the software may have some types of behavior [3]. An agent is "one who is authorized to act for or in the place of another" [4].
1.3. Properties of an Agent
The agent properties are classified as general and deliberative properties as discussed in [5].
1.3.1. General Properties
Following are the general properties of an agent as defined in [5].

Successful: An agent is successful to the extent if it accomplishes the specified task in the given environment.

Capable: An agent is capable if it possesses the effectors needed to accomplish the task.

Perceptive: An agent is perceptive if it can distinguish salient characteristics of the world that would allow it to use its effectors to achieve the task.

Reactive: An agent is reactive if it is capable to respond sufficiently and quickly to events in the world to allow it to be successful.

Reflexive: An agent is reflexive if it behaves in a stimulus-response fashion.
1.3.2. Deliberative Properties
Following are the deliberative properties of an agent as described in [5]:

Predictive: An agent is predictive if its model of how the world works is sufficiently accurate to allow it to correctly predict how it can achieve the task.

Interpretive: An agent is interpretive if can correctly interpret its sensor readings.

Rational: An agent is rational if it chooses to perform commands that it predicts achieving its goals.

Sound: An agent is sound if it is predictive, interpretive and rational.
1.4. Applications of Agent Technology
Developing agent models is one of the basic techniques for modelling complex system. Agent-based modelling is a bottom-up approach which can potentially produce better quality results in distributed systems modelling. In agent-based modelling, a complex system is viewed as a large number of autonomous communicating entities. The main focus is to identify the components of a system, to discover interactions among them and their local behaviours. The global system behaviour emerges from the local behaviours of the individual components, and their interactions as addressed in [6]. Agent technology is being used to model the large number of multi-behaviour distributed applications in different areas of real life as discussed below.
1.4.1. Supply Chain Management
A supply chain is a network of warehouses, suppliers, distribution centers, factories, and retailers, through which raw materials are produced, procured, transformed, and delivered to the customer [1?]. An agent-based supply chain management system manages the cooperation of these systems components and views the supply chain as composed of a set of intelligent software agents, each agent responsible for one or more activities in the supply chain and interacts with other agents in the planning and execution of their responsibilities as discussed in [7].
1.4.2. Workforce Management
The fast moving and competitive global economy requires that organizations should manage their human resources in an efficient and flexible manner in order to tap their full potentials [2?]. The management of human resources has crucial role in success or failure of an organization. In agent-based workforce management the agents are used to achieve the goal of each phase of the workforce management process, namely, task formulation, matchmaking, brokering, commuting, service etc. [8].
1.4.3. Distributed Computing
A distributed system composed of a number of autonomous entities that have processing and storage capabilities and are interconnected by a common communication mechanism [3?]. Such entities can be modeled to communicate with other components of the system through common communication mechanism to execute their local computations. It reduces the time complexity and increases the computational power. These entities can be viewed as agents, which provide a simple way to understand a complex distributed system. A platform for P2P distributed computing based on mobile agents is described in [9].
1.4.4. Business Process Management
Business process management systems (BPMS) are used in many organizations to overcome their daily business activities and administrative work. Agent technology is being used to overcome the drawbacks and limitations in existing systems. Many researchers have developed a number of agent-based solutions of BPMS system [10], [11], [12]. There are different techniques, each one has its own specific characteristics and features of using the autonomous, collaborative and intelligent software agents with agent-based BPMS system [13].
1.4.5. E-healthcare
The aged population is the most important healthcare concern of many countries in the world. Aged patients require more healthcare efforts as they present more cases of chronic illnesses which require higher healthcare costs. E-healthcare systems based on agent technology are expected to play a vital role in relieving this problem. In [14], a multi-agent architecture for mobile health monitoring is presented, involving a team of intelligent agents that collate patient data, reason collectively and recommend actions taken to patients and medical staff in a mobile environment.
1.4.6. Knowledge Sharing
Sharing of information and knowledge among enterprises having same nature of business has become very important important. An agent-based approach to organize enterprise activities and those of its customers, suppliers and partners into an open dynamic environment via networks is presented in [15]. The purpose of this research was to provide the sharing of information and knowledge which is relevant to customer's requirements, products and services of the enterprise.
1.4.7. Knowledge Discovery
Agent-based knowledge discovery provides a new technique for performing data-mining over distributed databases to extract hidden and useful information from databases. The agent-based knowledge discovery combines the different techniques from distributed artificial intelligence and machine learning, to mine local databases. These agents then co-operate to integrate the knowledge obtained, before presenting the results to the user [16]. In [17], a knowledge discovery process is integrated with service-oriented gird application supported by agent framework for university domain.
1.5. Agent Modeling Techniques
Modeling has been a fundamental part of engineering, art and construction for centuries. Complex and distributed software models that might be difficult to describe textually can easily be described through diagrams. Modeling provides three key benefits, visualization, complexity management and clear communication [4 ?]. Following are the methodologies used for the development and modeling of agent-based systems.
1.5.1. The Gaia Methodology
The Gaia methodology is used for agent-oriented analysis and design. Gaia methodology facilitates the designers to develop the agent structure and agent society and organization structures. Using Gaia, software designers can automatically develop and systematically developed design based on system requirements. It is of less value in the open and unpredictable domain of Internet applications, on the other hand it has been proven as a good approach for developing closed domain agent-systems [18].
1.5.2. The Multiagent Systems Engineering Methodology
Multiagent systems engineering methodology (MaSE) is similar to Gaia with respect to generality and the application domain support, but in addition MaSE goes further regarding support for automatic code creation through its tool [7 ?]. The objective of MaSE is to guide the designer from the specification of the system to the implementation of agent-based system. Domain restrictions of MaSE are similar to those of Gaia's, but in addition it requires that agent-interactions should be one-to-one and not multicast [18].
1.5.3. Agent Unified Modeling Language
Agent unified modeling language (AUML) is a mechanism to model protocols for agent interaction. This is achieved by introducing a new class of diagrams into UML protocol diagrams. These protocol diagrams extend UML state and sequence diagrams in various ways. Particular extensions include agent roles, multithreaded lifelines, extended message semantics, parameterized nested protocols, and protocol templates [5 ?]. Agent UML represents the internal behavior of an agent and its role specification, packages with agent interfaces, and deployment diagrams indicating agent mobility [19].
1.5.4. Agent Modeling Language
The agent modeling language (AML) is a semiformal visual modeling language use for specifying, modeling and documenting the agent-based systems [6 ?]. The AML combines and integrates the most important concepts from the extensive set of existing multi-agent theories and abstract models. The AML is documented as an extension to UML in accordance with the object management group modeling frameworks as discussed in [20].
1.6. Agent Oriented Software Engineering
Agent oriented software engineering (AOSE) is concerned with how to effectively engineer agent systems, that is, how to specify, design, implement, verify and maintain agent systems [3]. In software engineering, agent oriented approaches can improve our ability to design, model and develop complex and distributed systems.

Agent oriented approaches will become as one of the dominant software engineering techniques. These approaches are well suited for designing the complex real world problems. On the standard set of software metrics, the advantage of the agent-based technique as in terms of productivity, software reliability, system maintainability, over a range of other approaches is shown in Fig 2.1 [8 ?]. Following are the mandatory characteristics of agent-oriented software engineering for developing complex systems which are indicated in [18].
1.6.1. Decomposition
The most fundamental technique to develop the complex and large scale problem is to divide it into small units, and then each unit can easily be designed. Decomposition helps tackling complexity because it limits the designer's scope at any instant focusing at a portion of the problem needs to be considered [18].
1.6.2. Abstraction
Abstraction is the process of defining a simplified model of the system that emphasizes some of the details or properties, while suppressing other properties. Again, this technique works because it limits the designer's scope of interest at a given time. In this way attention can be focused on the salient aspects of the problem, at the expense of the less relevant details.
1.6.3. Organization
This is the process of identifying and managing the inter-relationships between the various problem solving components. The ability to specify and enact organizational relationships helps designers to tackle complexity in two ways. Firstly, by enabling a number of basic components to be grouped together and treated as a higher-level unit of analysis. For example, the individual components of a sub-system can be treated as a single unit by the parent system. Secondly, by providing a mean of describing the high-level relationships between various units. For example, a number of components may need to work together in order to provide a particular functionality.

