A summarizing note on the cases

Chapter 8 Conclusions and Future Works
This chapter starts with a summarizing note on the cases examined in Chapter 5, 6, and 7 in terms of GPGPU-based systems analyses. It proves onto the comparable effort in hardware acceleration for High Performance Computing (HPC) on consumer-level devices. The perceived contribution to domain knowledge from this research is then summarized before the anticipated future works in the related fields are reported.
8.1 Case Study Conclusions
Based on the devised general GPGPU frameworks detailed in Chapter 4, three comprehensive case studies, focusing on filtering techniques, wavelet transforms, and Fast Fourier Transform (FFT), have been presented in Chapter 5, 6, and 7 to evaluate the performance of the design. It is evident in the experiments that the framework is most effective (gaining the maximum acceleration factor) when dealing with settings of:
· Large volumes of same types of data on which the same computations are performed

· Independencies between data elements at each step in the computation

· Ability in flood and saturate all Arithmetic Logic Units (ALUs)
Based on the works of this research and other pilot projects in the field, it is clear that PC-grade (or consumer/commodity level) parallel platforms are suitable for applications in the following fields (Manuel et al., 1996 [168]; Merlin et al., 1999 [169]):
· Basic Linear Algebra such as large matrix/vector operations;

· Molecular dynamics;

· Signal processing;

· Physics simulation;

· Sequence matching (such as the Hidden Markov Models);

· Artificial neural network and applications;

· Databases operations;
Apart from the above listed domains, there are many other areas in which data parallelism can be exploited. These applications inspired the research initiative in GPGPU design and development. It is also concluded in this research that the data parallelism on consumer devices often requires redesign of traditional algorithms to meet the GPU's hardware characteristics, which have been explored in the case studies of filtering techniques and FFT for signal processing, and the wavelet-based denoising for image processing.
8.1.1 GPGPU-based LTI System Strategy
The characteristics of data parallelism determine that GPUs can be ideally employed by linear time-invariant (LTI) systems for process acceleration subject to a few adjustments.

As shown in Figure 8.1, a LTI system can be abstracted into a single function called the system's impulse response (indicated by h(t) in Fig. 8.1) which takes in signal in the spatial domain and generates output that is simply the convolution of the input and the impulse response. Equally, a LTI system can be characterized in the frequency domain by the system's transfer function, which is normally the Fourier transform of the system's impulse response. As a result of the transforms, the frequency domain output of the system is the product of the transfer function and the input signal. In other words, the convolution operations in the time domain will generate equivalent results as in the frequency domain through multiplication as illustrated in Figure 8.2 (Willems, 1986 [170]).

The case study in Chapter 5 has examined in detail techniques and know-how in realizing GPGPU to implement filtering algorithms in the time domain. It is designed in the experiment that the continuous-time system will first be transformed into a discrete-time linear shift-invariant system, in which signals and impulse response are both discrete-time samples, and the convolution kernel is defined for the transformation sequences. During the actual shader program development, the convolution between the input signal and the impulse response was transformed into matrix/vector operations in corresponding shader models. The multiple stream processors will carry out this basic linear algebraic computation in a parallel style. In conclusion of the case studied in Chapter 5, it can be summarized that the GPGPU-based time domain LTI can be issued by the steps shown in Figure 8.3.

As explained in Chapter 4, the fragment shader is commonly chosen as the "worker" in contrast to its predecessor, the vertex shader, for carrying out linear algebraic operations on a GPU. Figure 8.3 also highlights the GPGPU framework pattern as illustrated in the Figure 4.10.

In addition to the filtering techniques used in LTI systems, other applications such as image processing have also extensively applied this type of processes. The case study reported in Chapter 6 has explored the GPGPU-based parallel implementation on wavelet-based image denoising. In comparison to Figure 8.1 which only shows the simplest LTI system, most applications involve multiple impulse responses. For the practical applications of that nature, a thorough analysis on the wavelet transform and its realization on GPU is beneficial to developers since there is a cascading connection of vertical and horizontal filtering on the same decomposition level. As shown in Figure 8.4, for the whole wavelet transform process, there exists a uniform-style cascading connection of various levels of decomposition and reconstruction.

The structure of the cascading connection indicates a series of parallel cores have to be performed in sequence (serial processing) on a GPU. Figure 6.3 in Chapter 6 has illustrated the operational flowchart of the wavelet-based denoising on a GPU and Figure 7.12 depicts the responsibility of the host and device in a CUDA paradigm. The Framebuffer Object (FBO) has been chosen in the solution design to store the intermediate results of the cascading operation due to its flexibility and robustness with satisfactory result.

The loop structure shown in the Figure 8.5 indicates the multi-pass cascading relationship between various level of decomposition and reconstruction in the GPGPU application.
8.1.2 Frequency Domain Analysis on GPGPU-based LTI Systems
The case studies reported in Chapter 5 and 6 were focusing on the LTI system performance in the time domain. As highlighted in Figure 8.2, LTI systems can also be analysed in the frequency domain by applying Fourier transforms on the system impulse response. The experiment examined in Chapter 7 has demonstrated the realization of GPGPU-based LTI systems by the means of Fourier transform and the inverse Fourier transform. In this case, continuous-time system has to be transformed into discrete-time linear shift-invariant system. To further enhance the system performance, the discrete Fourier transform (DFT) has been adopted together with its inverse in implementing the practical system. It is well understood from practice that direct compute the DFT and IDFT can be extremely slow, therefore, the technique of Fast Fourier transform (FFT) is often employed as a practical solution. As such, the FFT is widely regarded as the foundation for analyzing LTI systems in the frequency domain. A wide spectrum of algorithms for implementing the FFT have been developed in the past, among them, the Cooley-Tukey algorithm, Prime-factor FFT algorithm, Bruun's FFT algorithm, Rader's FFT algorithm, and Bluestein's FFT algorithm are the most prominent and successful (Auslander et al., 1996 [171]; Temperton, 1983 [172]; Kekre et al., 1988 [173]; Swarztrauber et al., 1991 [174]). Echoing this development, the implementation of the FFT and IFFT on a GPU for speed gain has been proposed since the appearance of programmable GPUs, most of the pilot projects were carried out on the basis of the so-called butterfly operations.

The importance of the hardware-assisted FFT is also evident by GPU vendors' innovation on their software products. A classical example of this is the CUFFT, a FFT library for CUDA covering the 1D power of 2 FFTs and the 3D non-power of 2 FFTs. "The CUFFT liberates the GPGPU programmer from tedious work of remapping their algorithms to graphics concepts", as claimed by its developer. The case study in Chapter 7 has demonstrated the adoption of CUFFT functions for issuing FFT transforms on various data sizes. Furthermore, the experiment has also tested and proven the feasibility in using the Vertex Buffer Object (VBO) to efficiently render the computation results, which are much quicker than rendering the vertex arrays directly. As a new development, the device memory released by the unified-pipelined-based GPUs has enabled the binding of a VBO directly with the data stored in GPU's texture memory to accomplish the function of a traditional vertex shader. It greatly reduces the bandwidth bottleneck of transferring massive data sets from GPU's memory (e.g., the legacy framebuffer in traditional GPUs) to vertex array in the CPU.

The case studies in Chapter 5, 6 and 7 have highlighted the evolution of GPU's pipeline structures and its impact on the developing tools of GPGPU applications, from the widely adopted pipeline structure with vertex and fragment shader to the revolutionary unified pipeline; from the low-level assembly to high-level HLSL and CUDA. It is worth noting that data access in HLSL is achieved through texture fetching by locating texture coordinates, while in CUDA the operation is issued by indexing the thread since each element in a massive data set corresponds to different thread index, an analogy to data access through memory address in CPU programming.

It was also observed in the case studies that the employed GPGPU frameworks had followed the designed architecture patterns for GPU programming as shown in Figure 4.10 and 4.11 in Chapter 4. Since a regular GPGPU application belongs to the "processor framer" architectural pattern, therefore the balancing of the task allocation between the "farmer" (CPU) and the "worker" (GPU) is a crucial factor in determining the GPU's speed-up rate for the entire application. Figure 6.3 and 7.15 illustrate the task allocation in the concerned case studies respectively.
8.1.3 Hardware Acceleration Prospects for High Performance Computing
It is well recognized that high performance computing (HPC) has often dedicated to special-purpose and often expensive hardware. The situation has somewhat changed recently, in the last decade or so, attributing to 'consumer-level' computing devices such as game consoles, mobile devices, and PCs. Several different approaches to hardware acceleration that are currently being tested on PC-grade HPC systems include multicore processors, chip multithreading, graphics processing units, field-programmable gate arrays, Cell processors, and vector processors (Feng and Manocha, 2007 [175]). Because each technology has different performance characteristics, as well as practical considerations (such as electrical consumption, physical interface, and cost), a match of these characteristics to the case studies are summarized below:
· Multicore Processors
It's only been a few years since microprocessor manufacturing processes were able to place more than one microprocessor on a single physical socket. Today, dual-core processors are inexpensive enough to be found in consumer computers, as well as HPC systems (Feng and Manocha, 2007 [175]). Furthermore, Quad-core processors can yield the processing capability that is same as eight processors if the mother board supports two physical CPU sockets. In this way, more cores provides for increased processor density within the same number of sockets. It is obvious that this trend will provide new opportunities to consumer-level parallel computing and might even bring great impact on some popular engineering/mathematical algorithms, for example, fast but serial-based algorithms. However, the increased processor density comes at a cost on communication buses in terms of bandwidth to main memory, synchronization and clocks. It is even clear to relative novice in computing that one shouldn't expect a double, quadruple, or octuple of program execution speed simple because there are dual-core, quad-core, or octa-core CPU's employed. For HPC workloads, multicore processors have to face the challenge that the communication latency and bandwidth place on a single socket, a challenge which is greater when multiple CPU sockets exist on a main board. This is a main reason why today's quad-core processors operate at decreased clock frequency compared to dual- or single-core processors (Bader et al., 2009 [176]). It unavoidably decreases the multicore CPU's performance when used in HPC as a hardware accelerator. It has been observed from the case study in Chapter 7 that a quad-core CPU has a limited effect on acceleration in contrast to running the HPC workloads on GPU. Although six, eight, and even twelve-core processors are hanging just above the horizon (Intel has even showcased an 80-core chip providing a teraflop of computing power (Intel Corporation, 2008 [177])), based on the author's view, this is not an imminent solution for power-hunger parallel computing applications.
· On-Chip Multithreading Processor
Chip multithreading technology (CMT) means a processor maintains separate threads, managed in hardware, which brings to hardware the concept of multi-threading, similar to software multi-threading (Nagarajayya, 2005 [178]). Software multi-threading refers to the execution of multiple tasks within a process in which the tasks are executed using software threads. This has been widely used in today's operating systems and applications, and are available as a programming paradigm in mainstream languages like C++ and Java. However, the software threads are mainly executed on a single processor in a serial fashion. In contrast, a CMT-enabled processor has the ability of executing many software threads simultaneously within its own cores, which greatly increases a processor's efficiency. The classical products on the market that have adopted the CMT technology are the Sun's UltraSPARC T1 (Sun Corporation, 2008 [179]) and T2+ processors (Sun Corporation, 2009 [180]). To the operating system (and the application developers), a single T2+ processor with 8 cores and 8 threads per core appears as 64 separate processors.

Although integrated better than the above multicore-based approach, CMT still has the rigid demand on "suitable" applications and algorithm mapping. Unlike the processors based on the Simultaneous Multithreading technology (SMT), which had developed strategies for efficient sharing of key resources such as execution pipeline and fetch bandwidth; in a CMT processor, most chip-level resources are still shared by multiple threads which requires further research to identify policies and mechanisms to maximize its overall performance (El-Moursy and Albonesi, 2003 [181]). It is reported that on the Sun UltraSPARC T2+ processor, a linear increases in speed is observed as more cores were added, but beyond eight, there was little increase in performance (Sandrieser et al., 2009 [182]).
· Cell Broadband Engine
The Cell CPU, formally referred as the Cell Broadband Engine (Cell BE) processor, is at the heart of the popular Playstation3 gaming console. The architecture of the Cell BE has been introduced in Figure 4.8 in Chapter 4. While this architecture was initially designed for gaming it has potential applicability to HPC workloads. The newly released PowerXCell 8i provides enhanced floating-point performance over its predecessor (Bader et al., 2009 [176]). However, based on the author's observation, the access of the raw power of the Cell CPU on play station is deliberately made difficult for application developers due to commercial considerations by the manufacturer and vendors.

Within the Cell, the general-purpose Power Processing Element (PPE) hosts the operation system, which interface with the rest of the system. Up to eight Synergistic Processing Elements (SPEs) provide additional processing power, each with a theoretical peak performance of over 25 GFLOPS for single precision mathematics (Gschwind, 2007 [114]). These SPEs have their own shared and local memory, a communication bus, and an interface through direct memory access (DMA) to the PPE and the rest of the outside system. This design provides benefit on data locality but exposes some challenges for programmers, for example, how to decide which components of a workload will run best on the SPEs, versus on the PPE or elsewhere? What impact of the workload distribution plan id going to bring to the compile and run-time. Although the software development kit (SDK) provided by IBM, as well as third party SDKs from RapidMind for instance, can make use of the SPEs more transparent, the DMA model and PPE "front end" to the SPEs still incurs a computational cost for accessing the SPEs (Gschwind, 2007 [114]).

In contrast to the chip multithreading and multicore processors, the Cell processor, if properly tuned for a type of computation, will greatly exceed the performance of a single microprocessor. For harnessing its power, an open source programming platform, Open Computing Language (OpenCL), has been developed by the HPC research community, which is currently under trial (Khronos, 2009 [183]).
· Field Programmable Gate Array
Field programmable gate array (FPGA) is a special-purpose vector processor which provides programmers the opportunity to "route" applications on hardware, rather than "code" them in software (Feng and Manocha, 2007 [175]). For specially aligned applications, FPGA can achieve performance that is close to that of a standalone application-specific integrated circuit (ASIC), the digital signal processor or special-purpose "board" based devices. However, these types of "fine-tuned" well suited applications are relatively small in number, due to the limited size of programs that fit on FPGAs, the bandwidth limitations, and the synchronization restrictions (�ucha and Hanz�lek, 2008 [184]). Therefore, FPGAs are commonly treated as part of the so-called specific-purpose-built HPC systems, which are mainly used for digital signal processing, bioinformatics computation, and image processing with small-scale data sets. In addition, restrictions on applicable programming models for FPGAs, have limited its spread in industry (�ucha and Hanz�lek, 2008 [184]). Therefore, FPGAs are considered not well studied to general-purpose computing as the ones investigated in this research.

Overall, GPUs has proven a qualified candidate in carrying out many HPC tasks and providing much needed hardware acceleration on an affordable cost to many engineering applications. Their outstanding GFLOPS and the large amount of arithmetic cores have power consumption over a general-purpose CPU. Application programming libraries such as CUDA's Fast Fourier Transform (FFT) library has benefited programmers by avoiding the prerequisite knowledge on the hardware-level differences between different GPUs and graphical operations. The efficiency of a GPU acting as a hardware accelerator has been validated through the case studies in this project. It is envisaged that GPUs will have bigger shares in future consumer-level HPC systems research and development.
8.2 Final Conclusions
This dissertation reports an investigation into the implementation of parallel computing in signal and image processing by using consumer-level PC-grade programmable graphics hardware. The domain of the investigation has been focused on the practical engineering application of surface metrology. The proposed works have demonstrated the feasibility and applicability of GPGPU in linear time-invariant systems with systemic validation over the performance of the solutions.

It is perceived that this dissertation has made several contributions to the domain knowledge as following:
· Graphics Hardware Characterization
One of the contributions of this dissertation is the systematic and programmatic characterization of graphics hardware features, such as the vector processor architecture and various pipeline elements for mapping to the parallel processing paradigms. This has laid down the foundation for benchmarking the GPGPU systems strategy and performance validation.
· Generic Patterns for GPGPU Programming Definition
With the rapid evolution of GPU hardware and its development tools, it is crucial to clearly define the architectural patterns of GPGPU systems as a general guideline for application developers in spite of the variety of different generations of GPUs and vendor-specific shading languages. This work will facilitate future development in terms of system analysis and implementation. The pattern definition criteria has followed the classification of architectural patterns in general parallel computing with the terminologies being mapped to it as well.
· LTI System Kernels Strategy
In this research, a scope of popular engineering algorithms have been adopted for the implementation on different types of graphics processors with overall satisfactory hardware acceleration performance. These algorithms mainly correspond to the single-level and cascaded LTI systems in both spatial and frequency domains. This dissertation has revealed the strategies devised in kernel definition for these systems with regards to the hardware characteristics of legacy and latest GPUs.
· Criteria for Performance Analysis and Evaluation
Another important contribution from this project is the effort in forming criteria for evaluating GPGPU systems performance in term of acceleration factor and, operational and data accuracy. For testing the performance criteria, a set of CPU-based programs have also been developed in the research to evaluate the performance of the proposed GPGPU frameworks. While exercised, the evaluation on the GPGPU frameworks has clearly demonstrated the speed up factor and the accuracy model in a quantifiable fashion. In addition, this dissertation has concluded that the proposed GPGPU frameworks are based on the "farmer-and-worker" architecture with both the GPU and the CPU's role in the structure considered. The effect of workload distinction on CPU in an entire GPGPU application cycle has been thoroughly evaluated to validate the feasibility of the GPGPU frameworks in practical applications.
· Visualization of Massive Processed Data
Another relative trivial but more "obvious" contribution is the near real-time visualization of the processed data. This dissertation presented a visualization solution for efficiently displaying massive data sets by using the GPU resource of Vertex Buffer Object, which greatly promotes the acceleration performance of the graphical operations such as the transformation computation and the visualization processes.
8.3 Future Works
Commodity-level parallel computing has a wide diversity of applications from embedded and mobile software through consumer applications such as games and multimedia to HPC solutions. This demand of more computational power and capacity has been driving a steadily increasing market for parallel computing products. Apart from GPUs, other intrinsically parallel processors such as FPGAs and Cell CPUs have also appeared on the consumer doorsteps, providing a spectrum of parallel computing options. To better harnessing the raw power of the less regulated consumer "gadgets", it is essential to devise a unified programming model for devices such as GPUs, Cells, DSPs and other standalone or embedded processors in a system. CUDA has attempted to provide such a unified development platform, in the form of conceptions for host and computer devices that correspond to different kinds of processors. However, only limited success has been observed on Nvidia's own GPUs. It is still not even compatible with other vendor's GPUs.

A natural extension of this research would be the investigation of a heterogeneous framework consists of multi-core Cell CPUs, multiple GPUs and FPGAs that are interconnected by networks and databases to form clusters and grids. To support such a framework, the parallel task and distribution model will need to be developed and evaluated. The future research on the heterogeneous parallel programming framework can be centred on the following aspects.
· Platform Models Definition
The focus will be on the abstraction of an integrated parallel model (or models) for heterogeneous and asychronized hardware and networks. The investigation approach could follow the one adopted by the CUDA initiative, that is, a hierarchical structure consists of one or more hosts plus one or more computing clients. Each computing client is composed of one or more computing units, while each unit can be further divided into processing elements corresponding to software elements (functions), and arithmetic as well as register units. The clients can communicate with each other by using device-portable or middleware functions with all communications monitored by the hosts.
· Optimization and Standardization on Memory Access
For efficient cooperation among the processing elements, shared memory can be used as a low-latency solution, much like the L1 cache in a processor core similar to the shared memory model adopted by CUDA. However, due to the likely limited shared memory resources from the heterogeneous framework, optimization on memory access needs to be further investigated. This part of the work should mainly be concentrating on the memory coalescing strategy in which memory transactions might be issued in an irregular mode.
· Task Distribution Model
As a branch of high performance computing, distributed computing is commonly implemented in the form of clusters and grids in which a Message Passing Interface (MPI) model is employed for task parallelism (Foster, 1995 [2]). GPU clusters were initially developed for graphics and rendering demanding tasks, such as the visualization of time-dependent Computational Fluid Dynamics (CFD) simulation, which can comprise several gigabytes of intermediate processed data in a single clock cycle and lasting through several hundred or thousand frames. It is anticipated that further research on the GPU or other device clusters need to be carried out to achieve load balance and optimized task parallelism. A classic application of such a model can be explained in the following example: the practical implementation of a parallel LTI system for video event detection in which a series of continuous video frames need to be processed in a timely fashion. The demanding process might even require frames from different time segments been processed by different algorithms. For automating and analysing the videos online, the practical solution has to employ distributed processors with well balanced workload. There are currently limited researches on the GPU clusters based on the author's survey, possibly because the challenging demand in developing the complex parallel multigrid solvers with decoupled local smoothing mechanisms.
· Syntax and Semantics for the Adaptable Program
At the end of 2008, Apple, AMD and Nvidia have jointly released the Open Computing Language (OpenCL) as a future programming model and platform for developing programs that can execute across integrated parallel processing systems (IPPS). Similar to CUDA, OpenCL also employed the concepts of "host programs" and "kernels". However, OpenCL has added the flavour of task-parallelism to its kernel settings, for example, it envisages that a heterogeneous parallel system might be deployed through the task-parallel-based kernels for program execution. Although OpenCL is closing its Beta release, much researches are still needed in the application level.

