A sequential machine

Introduction:
Traditionally, Computers have been viewed as a sequential machine, which have a single Central Processing Unit (CPU), and in which a single program is broken into a discrete series of instructions, the instruction executed one after another, so only one instruction can be executed at a time .Using this fashion of processing the program needs a long time for completion. This slow of computations by a single processor may not be noticed by individual users, but there are large and complex problems that it is impossible to be solved using a single processor, because there are physical and architectural bounds, which limit the computational power that can be achieved with a single processor and which obviously affect the performance of processing.

Computer architects have always combated to increase the performance of their computer architectures. Parallelism is one of many technologies that help to have high performance computers. Parallel processing technology is currently undergoing a quit revolution, which will have a great impact on the future of computing. The main argument for using multiple CPUs is to create powerful computers.
Definition:
In simple words "a Parallel computing is a form of computation in which many calculations are carried out simultaneously, operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently ("in parallel")" . A parallel processing system capable to perform simultaneous data processing and expected to reach a high performance than the fastest systems consist of single CPU.

As John Zandt mentioned that there are many approaches exist to the realization of parallel processing. A popularly held definition of a parallel processer is one that is designed to execute a single program at a time, with all processors working together on some aspect of the same program. John Zandt listed the Following as the four common implementations of parallel processing that exist today:
Implementation#1: Multiprogramming
The capability to concurrently execute more than one process at a time. The programs not necessarily execute simultaneously, but instead take turns getting parts of themselves executed and today most OS have this capability.
Implementation#2: The multiprocessor
A computer composed of many processors (at least two) each processor executes one program with little interaction between the processors. One memory system is shared among the multiple processors. (Figure 1-1).
Implementation#3: The multicomputer
A computer that composed of more than one processor-memory pair, as shown in Figure 2.Whereas with a multiprocessor there is only one memory system; in multicomputer each processor has its own memory. The processors communicate by passing messages over the interconnection network (bus, or Local area network etc...).
Implementation#4: The special-case parallel processor
A parallel processor normally can execute only one program at a time.

In general in Parallel possessing the processors are computer systems consisting of processing units connected through some interconnection network and the software required to make the processing units work together. "There are two major factors used to categorize such systems: the processing units themselves, and the interconnection network that ties them together. The processing units can communicate and interact with each other using either shared memory or message passing methods" .

In an introduction to parallel processing the author described in short how parallelism is done:
· Breaking up the task into smaller tasks

· Assigning the smaller tasks to multiple workers(processors) to work on simultaneously

· Coordinating the workers

· Not breaking up the task so small that it takes longer to tell the worker what to do than it does to do it.
In The following we have a simple comparison between sequential processing and parallel processing just to know how parallel processing differs from the conventional one (sequential processing) :
Sequential Processing Parallel Processing
The program is written to be run on a computer having a single CPU The program is written to be run on a computer having at least two CPUs

A problem is broken down into a discrete series of instructions. A problem is broken into discrete parts that can be solved concurrently and Each part is then broken down to a series of instructions

Instructions are executed in a sequential fashion one after another. So only one instruction at a time can be executed.

Instructions from each part simultaneously executed on different CPUs
History of Parallel Processing (needs rephrasing)
Here we will introduce in brief the history of parallel processing form 1950s up to now.

In 1955, IBM introduces the 704, Gene Amdahl is the principal architect on the project, and it becomes the first commercial machine with floating-point hardware, It was a large-scale, electronic digital computer used for solving complex scientific, engineering and business problems. In April 1958, S. Gill (Ferranti) discussed parallel programming and the need for branching and waiting .Also In 1958, two IBM employees John Cocke and Daniel Slotnick first discuss the use of parallelism in numerical calculations in a research memo. Within two years, work begins around the globe on the development of parallel computing architectures. Burroughs Corporation introduced the D825 , a four-processor computer that accessed up to 16 memory modules through a crossbar switch In 1962 . In 1964, Slotnick had proposed building a massively parallel computer for the Lawrence Livermore National Laboratory. His design was funded by the US Air Force, which was the earliest SIMD parallel-computing effort, ILLIAC IV. The key to its design was a fairly high parallelism, with up to 256 processors, which allowed the machine to work on large datasets in what would later be known as vector processing. However, ILLIAC IV was called "the most infamous of Supercomputers", because the project was only one fourth completed, but took 11 years and cost almost four times the original estimate.

In 1967, Amdahl and Slotnick published a debate about the feasibility of parallel processing at American Federation of Information Processing Societies Conference .It was during this debate that Amdahl argument about limits to parallelism becomes known as "Amdahl's Law". By 1970, a handful of companies deliver multiprocessing computers, including Honeywell, who introduces its first Multics system in 1969. The Multics is a symmetric multiprocessor system capable of running up to 8 processors in parallel. C.mmp, a 1970s multi-processor project at Carnegie Mellon University, it was an early MIMD multiprocessor system developed by William Wulf (1971).

SIMD parallel computers can be traced back to the 1970s. The motivation behind early SIMD computers was to amortize the gate delay of the processor's control unit over multiple instructions.

In 1971, Intel produced the world's first single-chip CPU, the 4004 microprocessor. A year later, Seymour Cray leaves CDC to found Cray Research Inc. Cray will become known for their powerful multi-processor computers in the decades ahead. In 1974, CDC delivers the STAR-100, the first commercial pipelined vector supercomputer, to the Lawrence Livermore National Laboratory. Progress continues in 1975 and 1976. Advances are made in microprocessor development over the final years of the decade that begin to convince many people that parallel processing will not be a necessity in computing situations that do not require extremely powerful computers.

In 1980, the PFC (Parallel FORTRAN Compiler) is developed at Rice University under the direction of Ken Kennedy. Later that year, DEC develops the KL10 symmetric microprocessor. In addition, several researchers publish new descriptions and models relavent to parallel computing. Over the next few years, several new companies are founded with the goal of developing powerful computers, and many existing companies unveil new systems that take advantage of multiprocessing. Also in 1984, Multiflow is founded by Josh Fisher and others from Yale to produce very long instruction word (VLIW) supercomputers. Several companies continue to develop supercomputers that utilize parallel processing to achieve spectacular performance.

In the early 1990s, the trends established towards the end of the previous decade continue. Uniprocessors continue to increase in speed at a steady rate, and parallel computing is left to the developers of supercomputers. Companies like Cray and Sun continue to make powerful computers that begin to approach the size and usability of some desktop personal computers. Many more companies involved in multiprocessor systems research and development close their doors. The companies that do remain productive continue to improve performance on their parallel machines and find customers in the government, business, and the miliary. Here in 1998, parallel computing is indeed alive and well, but is hidden to the view of the average computer user due to the fact that uniprocessor systems provide (in most cases) more than enough power for the everyday home or business user. In the future, we may need to rely on parallelism to a large extent if we begin to reach the limit on speed using just one processor. Now a day Already computers are taking advantage of the multiprocessor technology that has been developed since the 50s.
The Need for Parallel Processing:
"You might think that one instruction executed in 9 billionths of a second would be fast enough. You'd be wrong" that what was mentioned an article in an introduction of parallel programming. Historically, parallel processing has been considered to be "the high end of computing", and has been used to model difficult scientific and engineering problems found in the real world, so there are many Complex and difficult problems that it is impractical or impossible to solve them on a single computer having single processor, and especially given limited computer memory. So, parallel processing is defined as the practice of employing a (usually large) number of cooperating processors, communicating among themselves to solve large problems fast. there are several scientific applications that could certainly use much more computing power. Among them:

Graphics: Volume rendering, Virtual reality, ray tracing.

Simulation: Weather prediction, Chip verification, oil exploration.

Image Processing: Image enhancement, feature extraction.

Artificial Intelligence: Image recognition, Game playing (chess, GO, etc.)

Large Database Searching: Air flights scheduling, DNA matching (The human genome project).

This list can go on and on, since any scientific area could use better and faster computers. In fact, computers are considered to be the laboratories of the future. A biologist or a chemist would not have to mix expensive or dangerous elements in the laboratory to test some scientific hypothesis ? she would just do it in front of a computer that simulated the molecules of the elements!
Amdahl's law
Amdahl's law, also known as Amdahl's argument,[1] is named after computer architect Gene Amdahl, and is used to find the maximum expected improvement to an overall system when only part of the system is improved. It is often used in parallel computing to predict the theoretical maximum speedup using multiple processors.

The speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program. For example, if a program needs 20 hours using a single processor core, and a particular portion of 1 hour cannot be parallelized, while the remaining promising portion of 19 hours (95%) can be parallelized, then regardless of how many processors we devote to a parallelized execution of this program, the minimum execution time cannot be less than that critical 1 hour. Hence the speed up is limited up to 20?, as the diagram illustrates. Two equivalent expressions for Amdahl's law are given bellow.
Flynn?s Taxonomy of Computer Architecture
As what M.Morris said that there are many ways that parallel processing can be categorized. It can be considered from the internal organization of the processors, from the interconnection structure between processors, or from the flow of information through the system. A classification introduced by M.J.Flynn considers the organization of a computer system by the number of instruction and data items that can be manipulated simultaneously. Flynn classified programs and computers by whether they were operating using a single set or multiple sets of instructions, whether or not those instructions were using a single or multiple sets of data. This classification divides computers into four major groups as follows:

Single instruction stream, single data stream (SISD): A single processor executes a single instruction stream to operate on data stored in a single memory.

Single instruction stream, multiple data stream (SIMD): refers to a parallel execution model in which all processors execute the same operation at the same time, but each processor is allowed to operate upon its own data. This model naturally fits the concept of performing the same operation on every element of an array, and is thus often associated with vector or array manipulation.

Multiple instruction stream, single data stream (MISD): This characterization refers to machines that have not been built and may never be, and exists only for the complete description of the classification system. Even though some argue that a cluster of workstations executing different programs on the same file (one that contains, say, DNA data or large numbers to be factored) behave as MISD, they hardly qualify as a single machine .

Multiple instruction stream, multiple data stream (MIMD): This group contains the computer systems with processors operate asynchronously, in this systems each processor may execute a different instruction while using a different piece of data.

Hesham & Mostafa pointed out that Conventional von Neumann computers with a single processor are classified as SISD systems. Only two of them are relevant to parallel computers (SIMD and MIMD). When there is only single control unit and all processors execute the same instruction in a synchronized fashion, then the parallel machine is categorized as SIMD. In a MIMD machine, each processor has its own control unit and can execute different instructions on different data. In the MISD category, the same stream of data flows through a linear array of processors executing different instruction streams. And there is no practical MISD machine; however, some authors have considered pipelined machines as examples for MISD.

In the following we introduce a brief description of each category, and its examples :
1. SISD Architecture:
· A serial (non-parallel) computer

· Conventional serial, scalar von Neumann computer

· A single instruction is issued each clock cycle

· Each instruction operates on a single (scalar) data element

· Deterministic execution

· This is the oldest and even today, the most common type of computer

· Examples: older generation mainframes, minicomputers and workstations; most modern day PCs.
2. SIMD Architecture:
· A type of parallel computer

· Single instruction: All processing units execute the same instruction at any given clock cycle

· Multiple data: Each processing unit can operate on a different data element

· Best suited for specialized problems characterized by a high degree of regularity, such as graphics/image processing.

· Synchronous (lockstep) and deterministic execution

· Two varieties: Processor Arrays and Vector Pipelines

· Examples:

· Processor Arrays: Connection Machine CM-2, MasPar MP-1 & MP-2, ILLIAC IV

· Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC SX-2, Hitachi S820, ETA10

· Most modern computers, particularly those with graphics processor units (GPUs) employ SIMD instructions and execution units.
3. MISD Architecture:
· A single data stream is fed into multiple processing units.

· Each processing unit operates on the data independently via independent instruction streams.

· Few actual examples of this class of parallel computer have ever existed. One is the experimental Carnegie-Mellon C.mmp computer (1971).

· Some conceivable uses might be:

· multiple frequency filters operating on a single signal stream

· multiple cryptography algorithms attempting to crack a single coded message.

· Example: Never been implemented
4. MIMD Architecture:
· Currently, the most common type of parallel computer. Most modern computers fall into this category.

· Multiple Instruction: every processor may be executing a different instruction stream

· Multiple Data: every processor may be working with a different data stream

· Execution can be synchronous or asynchronous, deterministic or non-deterministic

· Examples: most current supercomputers, networked parallel computer clusters and "grids", multi-processor SMP computers, multi-core PCs.

· Note: many MIMD architectures also include SIMD execution sub-components
William mentioned With the MIMD organization, the processors are general purpose; each is able to process all of the instructions necessary to perform the appropriate data transformation. (Figure 18.1).

According to John Zandt within MIMD class of parallel processors, two subclasses exit. The first one consists of the shared-memory MIMD machines. The second is the class of distributed-memory machines. These two subclasses are distinguished by the by their method of communication, which is a direct product of the relationship between the processors and the memory.
Shared Memory:
In a shared-memory machine (shared address space), the same memory locations are shared by all the processors.

Each processor can read or write the same information in memory. This is how both synchronization and communication occur in this class of parallel processor. The cache memory for these processors is an optimization that improves the performance of the computer without changing the basic shared-memory architecture. The cache holds data that the processor is currently using; this lets the processor avoid always having to read and write the main memory, which is slower than using data in the cache. In the shared-memory machine, processors communicate by placing information into the shared memory, where each processor can see it. this communication mechanism is combined with synchronization methods to allow the processors to coordinate who can write where in the memory.

Shared memory machines then can be divided into two main classes based upon memory access times: UMA and NUMA. As what William mentioned that further MIMD can be subdivided into two main categories: Symmetric Multiprocessor SMP, and Nonuniform memory access (NUMA).
Uniform Memory Access (UMA):
· Most commonly represented today by Symmetric Multiprocessor (SMP) machines

· Identical processors

· Equal access and access times to memory

· Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if one processor updates a location in shared memory, all the other processors know about the update. Cache coherency is accomplished at the hardware level.
Non-Uniform Memory Access (NUMA):
· Often made by physically linking two or more SMPs

· One SMP can directly access memory of another SMP

· Not all processors have equal access time to all memories

· Memory access across link is slower

· If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent NUMA
1. Symmetric multiprocessor (SMP):
In an SMP, multiple processors share a single memory or a pool of memory by means of a shared bus or other interconnection mechanism. A distinguish feature is that the memory access time to any region of memory is approximately the same for each processor.

A symmetric multiprocessor (SMP) can be defined as a standalone computer system with the following characteristic:
1. There are two or more similar processor of comparable capability.

2. These processors share the same main memory and I/O facilities and are interconnected by a bus or other internal connection scheme.

3. All processors share access to I/Odevices, either through the same channels or through different channels that provide paths to the same device.

4. All processors can perform the same functions.

5. The system is controlled by an integrated operating system that provides interaction between processors and their programs at the job, task, file and data element levels.
The operating system of a SMP schedules processors or thread across all of the processors. SMP has a potential advantages over uniprocessor architecture:
· Performance: A system with multiple processors will perform in a better way than one with a single processor of the same type if the task can be organized in such a manner that some portion of the work done can be done in parallel.

· Availability: Since all the processors can perform the same function in a systematic multiprocessor, the failure of a single processor does not stop the machine. Instead, the system can continue to function at reduce performance level.

· Incremental growth: A user can enhance the performance of a system by adding an additional processor.

· Sealing: Vendors can offer a range of product with different price and performance characteristics based on number of processors configured in the system.
Organization:
The organization of a multiprocessor system is shown in the figure 1-10
· There are two or more processors. Each processor is self sufficient, including a control unit, ALU, registers and cache.

· Each processor has access to a shared main memory and the I/O devices through an interconnection network.

· The processor can communicate with each other through memory (messages and status information left in common data areas).

· It may also be possible for processors to exchange signal directly.

· The memory is often organized so that multiple simultaneous accesses to separate blocks of memory are possible.

· In some configurations each processor may also have its own private main memory and I/O channels in addition to the resources.
The organization of multiprocessor system can be classified as follows:
· Time shared or common bus

· Multiport memory

· Central control unit.
Time shared or common bus
Time shared bus is the simplest mechanism for constructing a multiprocessor system. The bus consists of control, address and data lines.

The following features are provided in time-shared bus organization:
· Addressing: It must be possible to distinguish modules on the bus to determine the source and destination of data

· Arbitration: Any module can temporarily function as ?master?. A mechanism is provided to arbitrate competing request for bus control, using some sort of priority scheme.

· Time shearing: when one module is controlling the bus, other modules are locked out and if necessary suspend operation until bus access in achieved.
The bus organization has several advantages compared with other approaches:
· Simplicity: This is the simplest approach to multiprocessor organization. The physical interface and the addressing, arbitration and time sharing logic of each processor remain the same as in a single processor system.

· Flexibility: It is generally easy to expand the system by attaching more processor to the bus.

· Reliability: The bus is essentially a passive medium and the failure of any attached device should not cause failure of the whole system.
The bus organization disadvantages:
The main drawback to the bus organization is performance. All memory references pass through the common bus. Thus, the bus cycle time limits the speed of the system and to improve performance Each processor should have local cache memory, This should reduce number of bus accesses dramatically. Typically, workstation and PC SMPs have two levels of cache, with the L1 cache internal (same chip as the processor)and L2 cache either internal or external Some processors now employ L3 cache as well.

The use of caches introduces some new design considerations. Because Each local cache contains an image of a portion of memory, If a word is altered in one cache, it could conceivably invalidate a word in another cache. To prevent this, the other processors must be altered that an update has taken place .this problem is known as cache coherence problem Cache coherence problem this problem is typically addressed in hardware rather than by the operating system
Multiport Memory
The multiport memory approach allows the direct, independent access of main memory modules by each processor and I/O module. The multiport memory approach is more complex than the bus approach, requiring a fair amount of logic to be added to the memory system. Logic associated with memory is required for resolving conflict. The method often used to resolve conflicts is to assign permanently designated priorities to each memory port.
Advantages and disadvantages of Multiport Memory:
· The MM approach is more complex than the bus approach

· Requiring a fair amount of logic to be added to the memory system

· However, it should provide better performance

· Because each processor has a dedicated path to each memory module

· It is possible to configure portions of memory as ?PRIVATE? to one or more processors & or I/O modules

· This feature allows for increasing security against unauthorised access

· And for the storage of recovery routines in areas of memory not susceptible to modification by other processors
Disadvantages of Multiport Memory:
The multiport memory approach is more complex than the bus approach, requiring a fair amount of logic to be added to the memory system. Logic associated with memory is required for resolving conflict. The method often used to resolve conflicts is to assign permanently designated priorities to each memory port.typically; the physical & electrical interface at each port is identical to what would be seen in a single-port memory module

Thus, little or no modification is needed for either processor or I/O module to accommodate multiport memory
Central control unit
Central control unit delivers separate data streams between independent modules, Modules are: processor, memory, I/O

Controller Can buffer requests and perform arbitration and timing functions, It can also pass status and control messages between processors & perform cache update alerting.
Advantages:
· All the logic for coordinating the multiprocessor configuration is concentrated in the central control unit, interfaces from I/O, memory, & Processor remain essentially undistributed

· This provides the flexibility and simplicity of interfacing of the bus approach
Disadvantages:
· The key disadvantages if this approach are that the control unit is quite complex

· And that it is a potential performance bottleneck

· The central control unit structure was once quite common for multiple processor mainframe systems

· Such as large-scale members of the IBM S/370

· It is rarely seen today
Multiprocessor Operating System Design Considerations
An SMP operating system manages processor and other computer resourses so that the user perceives a single os controlling sys resources. A multiprocessor os must provide all the functiona;;ity of a multiprogramming sys plus additional features to accommodate multiple processors.among the key design issues are the following :
· Simultaneous concurrent processes-Multiple processors execute the same or different parts of OS , OS tables and mgmt. Structures managed properly to avoid deadlock

· Scheduling-conflicts should be avoided. Assign ready processes to available processors

· Synchronization-to enforce mutual exclusion and event ordering

· Memory Management-coordination of paging

· Reliability and fault tolerance -graceful degradation should be provided for failure
2. Nonuniform memory access (NUMA):
In NUMA architecture, all processors have access to all parts of main memory using loads and stores. The memory access time of a processor differs depending on which region of main memory is accessed. The last statement is true for all processors; however, for different processors, which memory regions are slower and which are faster differ.

A NUMA system in which cache coherence is maintained among the cache of the various processors is known as cache-cohence NUMA (CC-NUMA). There are multiple independent nodes, each of which is, in effect, an SMP organization.
Motivation
SMP has practical limit to number of processors ,Bus traffic limits to between 16 and 64 processors.

In clusters each node has own memory,Apps do not see large global memory

Coherence maintained by software not hardware.

NUMA retains SMP flavour while giving large scale Multiprocessing e.g. Silicon Graphics Origin NUMA 1024 MIPS R10000 processors

Objective is to maintain transparent system wide memory while permitting multiprocessor nodes, each with own bus or internal interconnection
System.

CC-NUMA Operation
There are multiple independent nodes, each of which is, in effect, an SMP organization.

Each node contains multiple processors,each with its own L1 and L2 caches,plus main memory. The node is the basic building block of the overall CC NUMA organization. The nodes are interconnected by means of some communication facility, which could be a switching mechanism a ring, or some other networking facility.

Each node in the CC-NUMA system includes some main memory.From the point of view of the processors, there is only a single addressable memory, with each location having a unique-wide address.When a processor initiates a memory access, if the requested memory location is not in the processors cache, then the cache initiates a fetch operation.If the desired line is in the local portion of the main memory, the line is fetch across the local bus.If the desired line is in a remote portion of the main memory, then an automatic request is send out to fetch that line across the interconnection network, deliver it to the local bus, and then deliver it to the requesting cache on that bus.

All of this activity is atomic and transparent to the processors and its cache. In this configuration, cache coherence is a control concern. For that each node must maintain some sort of directory that gives it an identification of the location of various portion of memory and also cache status information.
Figure : NUMA shared memory system
//William also illustrate the general organization of the taxonomy of figure above.The following figure shows the structure of an SISD,where there is some sort of control unit that provides an instruction stream to a processing unit.
Clusters
A cluster is a collection of stand-alone computers connected using some interconnection network. Each node in a cluster could be a workstation, personal computer, or even a multiprocessor system. A node is an autonomous computer that may be engaged in its own private activities while at the same time cooperating with other units in the context of some computational task. Each node has its own input/output systems and its own operating system. When all nodes in a cluster have the same architecture and run the same operating system, the cluster is called homogeneous, otherwise, it is heterogeneous. The interconnection network could be a fast LAN or a switch. To achieve high-performance computing, the interconnection network must provide high-bandwidth and low-latency communication. The nodes of a cluster may be dedicated to the cluster all the time; hence computation can be performed on the entire cluster. Dedicated clusters are normally packaged compactly in a single room. With the exception of the front-end node, all nodes are headless with no keyboard, mouse, or monitor. Dedicated clusters usually use high-speed networks such as fast Ethernet and Myrinet. Alternatively, nodes owned by different individuals on the Internet could participate in a cluster only part of the time. In this case, the cluster can utilize the idle CPU cycles of each participating node if the owner?s permission is granted. Figure 7.5 shows the architecture of a homogeneous cluster made of similar nodes, where each node is a single-processor workstation. The middleware layer in the architecture makes the cluster appears to the user as a single parallel machine, which is referred to as the single system image (SSI). The SSI infrastructure offers unified access to system resources by supporting a number of features including: . Single entry point: A user can connect to the cluster instead of to a particular node. . Single file system: A user sees a single hierarchy of directories and files. . Single image for administration: The whole cluster is administered from a single window. . Coordinated resource management: A job can transparently compete for the resources in the entire cluster.

In addition to providing high-performance computing, clusters can also be used to provide high-availability environment. High availability can be achieved when only a subset of the nodes is used in the computation and the rest is used as a backup in case of failure. In cases when one of the main objectives of the cluster is high availability, the middleware will also support features that enable the cluster services for recovery from failure and fault tolerance among all nodes of the cluster. For example, the middleware should offer the necessary infrastructure for checkpointing. A checkpointing scheme makes sure that the process state is saved periodically. In the case of node failure, processes on the failed node can be restarted on another working node. The programming environment and tools layer provide the programmer with portable tools and libraries for the development of parallel applications. Examples of such tools and libraries are Threads, Parallel Virtual Machine (PVM), and Message Passing Interface (MPI).
Distributed Memory
A message passing system (also referred to as distributed memory) typically combines the local memory and processor at each node of the interconnection network. There is no global memory, so it is necessary to move data from one local memory to another by means of message passing. This is typically done by a Send/Receive pair of commands, which must be written into the application software by a programmer. Thus, programmers must learn the message-passing paradigm, which involves data copying and dealing with consistency issues. Commercial examples of message passing architectures c. 1990 were the nCUBE, iPSC/2, and various Transputer-based systems. These systems eventually gave way to Internet connected systems whereby the processor/memory nodes were either Internet servers or clients on individuals? desktop. It was also apparent that distributed memory is the only way efficiently to increase the number of processors managed by a parallel and distributed system. If scalability to larger and larger systems (as measured by the number of processors) was to continue, systems had to use distributed memory techniques. These two forces created a conflict: programming in the shared memory model was easier,and designing systems in the message passing model provided scalability.
Main Charactristics :
· Memory is physically distributed among processors; each local memory is directly accessible only by its processor.
Just as you're used to when buying a plain computer, each component of a distributed memory parallel system is, in most cases, a self-contained environment, capable of acting independently of all other processors in the system. But in order to achieve the true benefits of this system, of course there must be a way for all of the processors to act in concert, which means "control"...
· Synchronization is achieved by moving data (even if it's just the message itself) between processors (communication).
The only link among these distributed processors is the traffic along the communications network that couples them; therefore, any "control" must take the form of data moving along that network to the processors. This is not all that different from the shared-memory case, in that you still have control information flowing back to processors, but now it's from other processors instead of from a central memory store.
· A major concern is data decomposition -- how to divide arrays among local CPUs to minimize communication
Here is a major distinction between shared- and distributed-memory: in the former, the processors don't need to worry about communicating with their peers, only with the central memory, while in the latter there really isn't anything but the processors. A single large regular data structure, such as an array, can be left intact within shared-memory, and each cooperating processor simply told which ranges of indices are its to deal with; for the distributed case, once the decision as to index-ranges has been made, the data structure has to be decomposed, i.e., the data within a given set of ranges assigned to a particular processor must be physically sent to that processor in order for the processing to be done, and then any results must be sent back to whichever processor has responsibility for coordinating the final result. And, to make matters even more interesting, it's very common in these types of cases for the boundary values, the values along each "outer" side of each section, to be relevant to the processor which shares that boundary

