Coursework for:

Internet Application Programming

3ISES17

MalN
2007xxx

CONTENTS

PageNo

Introduction 3
Basic HTTP Requests 5
Using the Common Gateway Interface

Basic Overview of the use of CGI 6

Explanation of how CGI is used 7
References 9
Appendix A:

Program listing of HTML Form 12

Program listing of CGI Script 14
Appendix B:

Screenshots of validation performed by CGI Script 16
Appendix C:

Additional Features 18

Introduction

Every time we request a web page on our browser, the browser would have created a
connection with a web server, sent a request and received the required page before displaying it

on our screens. A basic representation of such a request in shown in the diagram below:

Your browser

connects to a server % 2

and reguasts a page. =

| L

z

— The server sends % g

back the requested 3

page.
Your machine Server machine
running a Wab running a Wab
browser server

[Reference: http://computer.howstuffworks.com/web-serverl.htm, 23/11/08]

Generally pages requested by web browsers are static web pages which would be held in
the web server’s local repository. All the web server has to do is, locate the requested web page
and return it to the browser. What one means by a static web page is that its content does not

change until its owner modifies it.

But some applications or scenarios require information not from pages that have been
pre-written but from pages that are generated based on user input. For example, when searching
for an article on the web, the results are generated based on the search words entered by the user.
Such web pages are known to be generated dynamically. Being able to produce output based on
what the user has produced, makes web servers much more interactive. In these situations, the
server would actually have to process the information and generate a page to send back to the

user based on request. Web servers achieve this by the use of the Common Gateway Interface.

Before moving onto how dynamic pages are created, the following section explains how

a static web page would be requested and retrieved from a server.

Basic HTTP Requests

Every time a user requests a webpage by clicking on a link or simply typing it into the

address bar, the web browser would break down the URL into three main components:

- The protocol , eg: http, ftp, https

- The server, eg: www.google.com

- And the filename, eg: /file.html

Every web server has an IP address and a domain name. Using the IP address, the web
browser would connect to the server. After the connection is formed, following the HTTP
protocol, the browser sends a GET request, asking to retrieve the webpage. The server would then
process the request, locate the required page and return the result. The server sends back a HTTP
response to the browser, containing the HTML code for the webpage. The web browser would

then interpret the HTML tags and display the web page.

Using the Common Gateway Interface

The Common Gateway Interface (CGI) is a protocol which defines the rules for
transmitting information between a web server and an external program. According to
webopedia.com, any program that is designed to accept and return data that conforms to the CGI
specification can be classified as a CGI program. Using such programs, allow web servers to
dynamically interact with the users. CGI scripts can be written in any programming languages,

such as C, Perl, Java, etc.

Basic Overview of the use of CGI:

Using the database example mentioned on the web page at hoohoo.nesa, how CGI is used will be
explained:

If a person wants to share his database with the world by connecting to the web, he will
require a CGI program to transmit information between the web browser and the database engine.
When a client requires some information from the database, his web browser sends request to the
server. The database engine using CGI executes a CGI script which would then process the
request and return the results to the web browser. As the script is being processed on the web

server itself, this technique is known as server-side scripting.

The diagram below illustrates the use of CGI:

1 Erowser sends l
BEROWSER request o the seryer
rF' The browser
dizplays the data SERVER

The server locates the CGl program
and passes the request infarmation.

The CGl porgram processes the
request and sends data to the server

The server sends the
data tothe browser

[Reference: http://www.webdevelopersnotes.com/basics/client_server architecture.php3,

23/11/08]

Explanation of how CGI is used:

Generally the input for a CGI script is received from a HTML form on a webpage. For

example, the form shown below:

) HTML Form - Mozilla Firefox [AEE

Fle Edi Yiew Hstory Bookmarks Took Help

E- (& (ar (L | Flesfijc:pwamp bingspache japache2.2,8/cgh binfform. html : -| [CF -

[tost visited || Smart Bookmarks [vouTube - surfThechannel B3 Facsbook &7 signin 5 Westminister ¥ 0T group |] Roomsnet B o5 syntax & cr+ B maruto B TriLive Radio €0 Hsee

Welcome to

Online Surveys

Hi. we are conducting a smvey to see which 1s currently the popular drink m the country.
If vou ave between the ages of 14 and 50, we kindly request just a mmmte of yonr time to fill out the form helow.

General Information:

Haune : ‘Em\\y
age: 20

Email address: emiby@email.com

Swvey:
What's your faveurite dvink?

O Soda

O Pepsi

O Sprite

© Fanta

Ol ribeer
O Cream Soda
O Portello

O Cora-Cola
O Fruit juices
O Water

Dane

The webpage simulates that of a basic online survey page. The form is created to take in
the 4 separate items of data. Once this form is filled and the user presses the Submit button at the
bottom of the page, a HTTP request would be sent to the server. Upon submission, the file

specified in the action attribute of the form would be requested from the server. This form would

request a CGI script on submission.

The information that the user has entered in the form can be submitted by 2 methods:
GET and POST. By sending the form data using the GET method, the data is appended to the
URL of the CGI program and therefore all the data is visible in the address bar in name/ value

pairs.

Shown below is how the address bar would look if the GET method was used:

) Mozilla Firefox

File Edit Wew History Bookmarks Tools Help

@ b c . b | |;] .http:,l’,l’localhost,l’cgi-bin,l’mycgiZ.pI?reaIname=Susan&age=1S&Bmail=susan%4ﬂemailme.com&Drink=Fanta

In the POST method, the data is added to the HTTP request message. If the data sent needs to be
secure, for example, the username and password for an email account, the POST method is the

suitable method. For this form, I have used the POST method to send the data.

Shown below is the http request that is sent on submitting the form:

<L Live HTTP headers

| Headers | Generator | Config|| About |

[wrTR Headers
http:f flocalhostfcgi-bingmyegi.pl ~

POST fegi-bindmyegi. pl HTTRSL .1

Host: localhost

User-pgent: Mozillafs,0 {windows; U; windows MNT 5.1; en-US; rv:1.9.0.4) Gecko/2003102920 Firefox/3.0.4
Accept: text/hkml, application)xhkmlH:ml, applicationfxml;q=0.9,**;0=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 150-8859-1,utF-8;9=0.7,*:0=0.7

Keep-alive: 300

Connection: keep-alive

Content-Type: application=-wew-Form-urlencoded
Content-Length: 55
name=5usan&age=15&email=susan%40emailme. com&Drink=Fanta

HTTR/1 . 200 OF
Dake: Sun, 23 Maov 2008 15:56:59 GMT
Server: Apache/z.2.8 (Win32) PHP/S.2.6
keep-Al 2out=5, max=100
s i
Save all...] [Replay... Capture Clear] [Close

2

Upon receiving the request from the client’s browser, the server executes the CGI Script,
which is located in the cgi-bin directory. The script then begins to process the request. As all the
data is packaged up when being sent to the script, it has to be separated into their respective parts.
Once each data has been split, the script can begin various other processes, such as validation, etc.
After its processing, the resulting output can be returned back to the web browser in the form of

HTML code.

In the form I have created, upon submission the mycgi.pl file is requested from the
server. This script uses the split function to separate the various data items. Each data is validated.
A web page is then dynamically generated from the script, displaying either the error messages if

any field had been incorrectly filled in, or the data that the user has entered into the survey.

The webpage that is returned to the user upon completing the survey correctly is shown
below:

3 CGI Scripting Results - Mozilla Firefox
File Edit Miew History Bookmarks Tools Help

@ - Gar (1 | hepuisocatosticgisingmycaipl

w Mosk Visited | Smart Bookmarks E. YouTube SurfTheChannel Facehook £ Sign In _' Westminister "7 IIT group |J Roomsnet a 55 Synkax CH T+ u Mar

Name: Susan

Age: 15

Email address: susan@emalme. com
Yowr Swrvey Answer was:

Dink: Fanta

Thauk you for particpating m ow survey!

REFERENCED SITES:

How Web Servers Work - The Basic Process

http://computer.howstuffworks.com/web-serverl.htm

How Web Servers Work - Extras: Dynamic Pages

http://computer.howstuffworks.com/web-server12.htm

How Web Servers Work — Behind the Scenes

http://computer.howstuffworks.com/web-server2.htm

How CGI Scripting Works - The CGI Mechanism
http://computer.howstuffworks.com/cgi2.htm

How CGI Scripting Works - Forms: Sending Input

http://computer.howstuffworks.com/cgi4.htm

How CGI Scripting Works - Summary
http://computer.howstuffworks.com/cgi7.htm

Common Gateway Interface

http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

The Client-Server Architecture

http://www.webdevelopersnotes.com/basics/client_server_architecture.php3

Web and Database Integrating Using CGI

http://www.ncsi.ilisc.ernet.in/raja/netlis/wise/cgi/webcgi.htm

CGI
http:// www.webopedia.com/TERM/C/CGIL.html

How CGI Scripting Works - The CGI Mechanism
http://computer.howstuffworks.com/cgi2.htm

Web Server
http://www.webopedia.com/TERM/W/Web_server.html

10

APPENDIX

11

APPENDIX A:

Program listings of Form.html

<l--

Written by : Malshani Nanayakkara
StudentID: 2007020

-—->

<html>

<head><title>HTML Form</title></head>

<body bgcolor="#ADDFFF">

<hl><center>Welcome to</center></h1>
<h1><center>Online Surveys</center></h1>

<p align=center>Hi, we are conducting a survey to see which is currently the popular
drink in the country.

If you are between the ages of 14 and 50, we kindly request just a minute of your time to
fill out the form below.</p>

<form method=POST ACTION="http://localhost/cgi-bin/mycgi.pl">

General Information:

<pre>

Name: <input type=text name="name">

Age: <input type=text name="age">

Email address: <input type=text name="email">

</input>

</input>

/>

/>

</pre>

Survey:

What's your favourite drink?

<input type=radio name="Drink" value="Soda"> Soda </input>

<input type=radio name="Drink" value="Pepsi"> Pepsi </input>

<input type=radio name="Drink" value="Sprite"> Sprite </input>

<input type=radio name="Drink" value="Fanta"> Fanta </input>

<input type=radio name="Drink" value="Ginger Beer"> Ginger Beer

<input type=radio name="Drink" value="Cream Soda"> Cream Soda

<input type=radio name="Drink" value="Portello"> Portello </input>

<input type=radio name="Drink" value="Coca-Cola"> Coca-Cola </input><br

<input type=radio name="Drink" value="Fruit Juices"> Fruit juices </input><br

12

<input type=radio name="Drink" value="Water"> Water </input>

<input type=submit value="Submit !">

</form>

</body>
</html>

13

Program listing of mycgi.pl

#1C:/Perl/bin/perl.exe
use CGI qw(:standard);

read(STDIN, $data, SENV{CONTENT LENGTH});
print "Content-type: text/html\n\n";

#unpack the form data

($firstpair, $secondpair, $thirdpair, $fourthpair) = split(/&/, $data);
($firstkey, $name) = split(/=/, $firstpair);

($secondkey, $age) = split(/=/, $secondpair);

($thirdkey, $email) = split(/=/, $thirdpair);

#($thirdkey, $phoneno) = split(/=/, $thirdpair);

($fourthkey, $drink) = split(/=/, $fourthpair);

$validentry = 0; #keeps track if all entries are valid

print "<htmI><head><title>CGI Scripting Results</title></head>";
print "<body bgcolor=\"#ADDFFF\">
";

VALIDATION
#validating name
if($name !~ /[A-Za-z]+/ || $name =~/[0-9A-Za-z]+[0-9]+/) #if it is outside
the range of the alphabet or it is letters mixed with number
{
print "
ERROR: Name given contains an invalid character or has not been
provided!";
$validentry =1;
}
else
{

$namel = $name; #keeps an original version so that it can be written file. It
can read easily from the file then.

$namel =~s/\t+/ /;

print "Name: $namel";

}

#validating age
if ($age<14 || $age>=50)
{ print "<br /~~ERROR: Age is not between 14-80!";
$validentry =1; }
else
{ print "
Age: $age"; }

#validating email address
if (!($email =~/"[\w]+%40[\w]+/))
{ print "
ERROR: Incorrect email address ";
$validentry =1; }
else {

14

$email =~ s/%40/@/; #replaces the %40 with an @ sign
print "
Email address: $email"; }

#validating survey answer
if ($drink!~/[\w]/)
{ print "
ERROR: You haven't selected an answer!";
$validentry =1;}

else
{
$drink1 = $drink;
$drinkl =~s/\+/ /,
print "

Your Survey Answer was:";
print "
 Drink:
$drink1"; }

#displays a message if all entries have been correctly submitted
if ($validentry==0)
{

print "

<center>Thank you for participating in our survey!</center>";

#writing results to file
$file = 'survey results.txt';
open(OUTFILE, ">>$file");

print OUTFILE "$name\t$age\tSemail\t$drink\n";
close OUTFILE;

}

print "
";

print "<form method=POST action=\"http://localhost/cgi-bin/survey.pl\">";
print "<input type=\"submit\" value=\"View survey results\" ";

print "</form>";

print "</body></htmI>";

#validating telephone number
if ((length ($phoneno)==10) && ($phoneno =~ /*[0-9]+$/))

{ print "\nTelephone No: $phoneno"; }
else
{ print "nERROR: invalid phoneNo!"; }

15

APPENDIX B:
Screenshots of validating user input:
The following tests can be performed:

1. Two names written

2. No name provided

3. Number written instead of the name
4. Letters and numbers mixed

5. No age provided

6. Age given outside the required range
7. Letters written instead of a number

8. No email address given

9. Email address without the ‘@’ sign
10. No option selected

But as the same error message come for each test, the screenshots for certain validations are

shown below.
Test 1: Two names written

) CGI Scripting Results - Mozilla Firafox

File Edit Miew History Bookmarks Tools Help

@ S far [] | hetpefitocathosticgi-binmycai

i_ii Most Visited || Smart Bookmarks hﬁ, YouTube SurfTheChannel Facebook 5'_’ Sign In _' ‘Westminister “¥P 11T group |;] Raoomsnet @ 55 Syntax O C++ ! Maruto E& T

Name: Test Mame
Age: 15
Email address: susani@emailme com

Yomr Swvey Answer was:
Drmk: Fanta

Thank von for participating m owr smvey!

Test 2 - 4: Invalid Input for the Name

) CGI Scripting Results - Mozilla Firafox

File Edit Miew History Bookmarks Tools Help

@ S far [] | hetpefitocathosticgi-binmycai

i_ii Most Visited || Smart Bookmarks hﬁ, YouTube SurfTheChannel Facebook 5'_’ Sign In _' ‘Westminister “¥P 11T group |;] Raoomsnet @ 55 Syntax O C++ ! Maruto E& T

ERROR: Mame given contains an invald character or has not been prowided!
Age: 15
Email address: susan@emailme com

Your Smvey Answer was:
Drink: Fanta

16

Test 5 - 7: Invalid Input for the Age

©) CGI Scripting Results - Mozilla Firefox
Eile Edit ‘iew History Bookmarks Tools Help

@ e o dar [| btpsiiocalhost fogi-bingmycgi.pl

[Most visited || Smart Bookmarks YouTube SurfTheChannel B3 Facebook By Signdn i ‘Westminister “¥ IIT group |:] Roomsnet B €55 Syntax oH Cht ! Maruta B, T

Name: Susan
EREOR. Age iz not between 14-801
Email address: susan@emailme com

Yonr Smvey Answer was:
Dunk: Fanta

Test 8-9: Invalid Input for the Email address

9 cal Scripting Results - Mozilla Firefox

Ele Edit VMiew History Bookmarks Tools Help

@ > c M | |j | http:)flocalhast fegi-bin/myegi.pl

|_£| Mast Wisited || Smart Bookmarks YouTube

| surthechanne! [Facebook &7 signin i Westminister 9P 1T group |] Roomsnet B8 €55 Syntax o+ c++ B Naruto |

Name: Susan
Age: 15
ERR.OFR: Incorrect email address

Yowr Smvey Answer was:
Dimk: Fanta

Test 10: No Selection for the Survey Question

) CGI Scripting Results - Mozilla Firefox
File Edit VMiew History Bookmarks Tools Help

@ > c P) | |j | httpe g flocalhost fegi-bin/meycoi.pl

I:I_EI Most Wisited | | Smart Bookmatks YouTube SurfTheChannel Facebook €7 Sign In _' ‘Westminister ¥P IIT group \l] Roomsnst E 55 Syntax S C4++ u Maruto |

Name: Susan

Age: 15

Email address: susan(@emailme com
ERROR: You haven't selected an answer

APPENDIX C:

Additional Features:
-writes to a file

If the user has correctly entered data into each of the 4 fields, the information is written
on to a text file called ‘survey results.txt’.

3 CGI Scripting Results - Mozilla Firefox

Fle Edit Wew History Bookmarks Tools Help
@ A c ot I: |J - httpiiflocalhostfcgi-binfmycgi.pl

@ Most Yisted || Smart Bookmarks E&'ﬁ YouTube SurfTheChannel l] Facebook £ Sign In _ ‘Westminister "¥% IIT group |j Roomsnet a £S5 Syntax C O+ ! Maruta |

Name: Susan
Age: 15
Email address: susani@emailme.com

Your Swrvey Answer was:
Dhnk: Coca-Cala

Thanlk you for participating in owr smvey!

B survey results.ixt - Notepad E]E|E|

File Edit Format WYiew Help

Susan 15 susan@emailme. com Fanta

Susan 15 susan@emaiime. com Fanta

Test MName 15 susan@emaiIme. com Fanta
Fusan 15 susan@emaiIme. com Coca-Cola

18

- reads from the text file and displays survey results

Using this text file, the survey results can be viewed:

%3 CGI Scripting Resulls - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

@ 2 c (at ||l] ;ht!pii,lilocalhnstfcgi—b\nimycgi.pl 7

|_£| Most Visited || Smart Bookmarks E{, YouTube SurfTheChanne! n Facebook £ Sign In _ ‘Westminisker P 11T group |;] Roomsnet a £S5 Syntax S C++ E Matuto ﬁ, Tril Live

Name: Ermily
Age: 20
Finail address: emly@emal com

Yowr Swvey Answer was:
Dhmk: Fanta

Thauk you for participating m owr survey!

Wiew survey results

The page that mycgi,pl returns, contains a button which runs another script which will read the
file and display the survey results.

And a page like the one below will be generated:

%) CGI Scripting Results - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help
@ - c) I: |j | hittpe fflocalhostfegi-binfsurvey . pl

@ Most Yisited || Smart Bookmarks % YouTube SurfTheChannel Facebook B9 Sign In _ Westminister "% IIT group |j Roomsnet a €55 Synkax S C++ E Maruto

Survey Results:
Soda 2

Pepsi 4

Sprite 2

Fanta 1

Ginger Beer 1
Cream Soda |
Portello 2
Coca-Cola 1
Fiuit Juices 2
Water 0

A program listing for the survey.pl file is given below:

19

Program listing of survey.pl

#1C:/Perl/bin/perl.exe
use CGI qw(:standard);

print "Content-type: text/html\n\n";
print "<htmI><head><title>CGI Scripting Results</title></head>";
print "<body bgcolor=\"#ADDFFF\">
";

open(INFILE, 'survey_results.txt');

@drinks=("Soda", "Pepsi", "Sprite", "Fanta", "Ginger Beer", "Cream Soda", "Portello", "Coca-
Cola", "Fruit Juices", "Water");

@drinks_score=(0, 0, 0, 0, 0, 0, 0, 0, 0, 0);

while ($line=<INFILE>) #reads file line by line
{

($name, $age, $Semail, $survey) = split(/\t/, $line); #seperates each line into
seperate data

$survey =~s/\+/ /; #if the drink has two words, the '+' sign will be replaced by a
space

$i=0;

while ($i<10)

if($survey=~/$drinks[$i]/)
{ $drinks score[$i]++; #the line is compared with an
array containing all the drinks

$i++;

}

print "
 Survey Results:

";

$i=0;

while ($i<10)

{
print " $drinks[$i] $drinks_score[$i]";
print "
";
$i++;

}

print "</body></html>";

20

