The existing system

INTRODUCTION

Existing System
The Existing system in the organization involves maintenance of phone numbers of all the people working in any organization. Whenever the administrator want to have the communication with his subordinates, he have to look up the corresponding phone numbers, dial up and talk to them which is a time taking process. If the phone number is not available he have to take the help of other people. When a person starts to interact with the system, a bookkeeping system is used in order to know the login time and logout time, which is a tedious process. The other process is using punch cards to know login time and logout time.which is economically expensive. This process include
· Taking the phone number of the people.

· Maintaining login time and logout time

· If the concerned person is not available again make a call.
All the above listed tasks currently are handled manually. And it needs maintenance of lots of phone numbers. Due to this manual procedure, lots of errors are crawling in. In addition to all the above, keeping track of changing the new phone numbers is a big mundane task. Where there is certainly chance for human errors.
Proposed System
The proposed system is supposed to replace the existing manual tasks. The proposed system is the administrator can sit at his system and communicate with the project leaders, programmers and can also maintain the login time, logout time.

He can chat about the project going on with both the programmers and project leaders. This project also maintains offline messages. The administrator sees the IP address of the system of project leader/programmer he is interested and chat with the people .The project leader gives the instant report about the project to the administrator. When the programmer/project leader login into the system, the login time is automatically recorded in the administrator system.

The proposed system maintains
· Automatically recording the login time/logout time of the user.

· Frequent interaction between the administrator and the project leaders/programmers.

· Maintaining offline messages
This project makes the most of the tedious and mundane deskwork to minimize. This facilitates the user to concentrate more on the project and less on the managing of these tasks.
PROJECT SPECIFICATIONS
This project is mainly developed for the communication of Employees of organization located at different buildings. This project mainly consist of
· MESSAGE SENDING

· MESSAGE VIEW

· EMPLOYEE HIERACHIAL

· LOGIN DATE/TIME

· LOGOUT DATE/TIME
MESSAGE SENDING
In the large organization there are a set of programmers, Project leader and Administrator. These programmers are spread through out the organization into various groups. Project Leaders are in need to constantly interact with the programmers in_groups spread over organization . It is difficult to go and pass the message to each and ever programmer in personal
CHATTING:
When a person wants directly to communicate with the colleague, he/she can use this service.If a person is in online that person can communicate with the other person through the system located at different buildings

The project entitled Integral Messaging Syatem set of platform for the project leaders and administrator to send messages to keep constant interaction with the programmers. Through this project the administrator can scan the present online system IPAddress and send the messages to single programmer ,set of programmers, project leader or Set of project leaders or all the employees where he/ she is present
VIEW MESSAGES
This project consists of both online/offline messages.if the user is online he can directly interact with the other user.If the user is in offline he can view the message when he logins for the next time.
EMPLOYEE HIERACHIAL
This project maintains hierarchy for the employees.
· ADMINISTRATOR

· PROJECT LEADER

· PROGRAMMERS
LOGIN DATE/TIME
When the user logins the system, the login time is automatically recorded.

This login time are monitored by the administrators/project leaders depending upon the hierarchy.
LOGOUT DATE/TIME
When the user logouts the system, the logout time is automatically recorded.

This logout time are monitored by the administrators/project leaders depending upon the hierarchy.
1) HARDWARE & SOFTWARE SPECIFICATIONS
 HARDWARE REQUIREMENTS:
· PIII 500MHZ or above

· 128MB RAM

· 100MB Free Hard disk space

· STD Color Monitor

· Network interface card or Modem (For Remote Sources)
 SOFTWARE REQUIREMENTS:
· WINDOWS NT 4 | 2000 | XP | ME

· Visual Studio .Net 2008 Enterprise Edition

· Internet Information Server 5.0

· Visual Studio .Net Framework (Minimal for Deployment)

· Oracle 9i
PROJECT ANALYSIS

ACCESS CONTROL FOR DATA WHICH REQUIRE USER AUTHENTICATION
The following commands specify access control identifiers and they are typically used to authorize and authenticate the user (command codes are shown in parentheses)
USER NAME (USER)
· The user identification is that which is required by the server for access to its file system. This command will normally be the first command transmitted by the user after the control connections are made (some servers may require this).
PASSWORD (PASS)
· This command must be immediately preceded by the user name command, and, for some sites, completes the user's identification for access control. Since password information is quite sensitive, it is desirable in general to "mask" it or suppress type out.
SOFTWARE REQUIREMENT SPECIFICATION

SOFTWARE REQUIREMENT SPECIFICATION

REQUIREMENT SPECIFICATION:
The software, Site Explorer is designed for management of web sites from a remote location.
INTRODUCTION
Purpose: The main purpose for preparing this document is to give a general insight into the analysis and requirements of the existing system or situation and for determining the operating characteristics of the system.
Scope: This Document plays a vital role in the development life cycle (SDLC)

As it describes the complete requirement of the system. It is meant for use by the developers and will be the basic during testing phase. Any changes made to the requirements in the future will have to go through formal change approval process.
Developers Responsibilities Overview:
The developer is responsible for:
1. Developing the system, which meets the SRS and solving all the requirements of the system?

2. Demonstrating the system and installing the system at client's location after the acceptance testing is successful.

3. Submitting the required user manual describing the system interfaces to work on it and also the documents of the system.

4. Conducting any user training that might be needed for using the system.

5. Maintaining the system for a period of one year after installation.
Functional Requirements:

OUTPUT DESIGN
Outputs from computer systems are required primarily to communicate the results of processing to users. They are also used to provides a permanent copy of the results for later consultation. The various types of outputs in general are:
· External Outputs, whose destination is outside the organization.

· Internal Outputs whose destination is with in organisation and they are the users main interface with the computer.

· operational outputs whose use is purely with in the computer department.

· Interface outputs, which involve the user in communicating directly with
Output Definition
The outputs should be defined in terms of the following points:
· Type of the output

· Content of the output

· Format of the output
Location of the output
· Frequency of the output

· Volume of the output

· Sequence of the output
It is not always desirable to print or display data as it is held on a computer. It should be decided as which form of the output is the most suitable.

For Example
· Will decimal points need to be inserted

· should leading zeros be suppressed.
Output Media:
In the next stage it is to be decided that which medium is the most appropriate for the output. The main considerations when decideing about the output media are:
· The suitability for the device to the particular application.

· The need for a hard copy.

· The response time required.

· The location of the users

· The software and hardware available.
The cost.
Keeping in view the above description the project is to have outputs mainly coming under the category of internal outputs. The main outputs desired according to the requirement specification are:

The outputs were needed to be generated as a hot copy and as well as queries to be viewed on the screen. Keeping in view these outputs, the format for the output is taken from the outputs, which are currently beeing obtained after manual processing. The standard printer is to be used as output media for hard copies.
INPUT DESIGN
Input design is a part of overall system design. The main objective during the input desing is as given below:
· To produce a cost-effective method of input.

· To achive the highest possible level of accuracy.

· To ensure that the input is acceptable and understood by the user.
INPUT STAGES:
The main input stages can be listed as below:
· Data recording

· Data transcription

· Data conversion

· Data verification

· Data control

· Data transmission

· Data validation

· Data correction
INPUT TYPES:
It is necessary to determine the various types of inputs. Inputs can be categorized as follows:
· External inputs, which are prime inputs for the system.

· Internal inputs, which are user communications with the system.

· Operational, which are computer departments communications to the system?

· Interactive, which are inputs entered during a dialogue.
INPUT MEDIA:
At this stage choice has to be made about the input media. To conclude about the input media consideration has to be given to;
· Type of input

· Flexibility of format

· Speed

· Accuracy

· Verification methods

· Rejection rates

· Ease of correction

· Storage and handling requirements

· Security

· Easy to use

· Portabilility
Keeping in view the above description of the input types and input media, it can be said that most of the inputs are of the form of internal and interactive. As Input data is to be the directly keyed in by the user, the keyboard can be considered to be the most suitable input device.
ERROR AVOIDANCE
At this stage care is to be taken to ensure that input data remains accurate form the stage at which it is recorded upto the stage in which the data is accepted by the system. This can be achieved only by means of careful control each time the data is handled.
ERROR DETECTION
Even though every effort is make to around the occurrence of errors, still a small proportion of errors is always likely to occur, these types of errors can be discovered by using validations to check the input data.
DATA VALIDATION
Procedures are designed to detect errors in data at a lower level of detail. Data validations have been included in the system in almost every area where there is a possibllity for the user to commit errors. The system will not accept invalid data. Whenever an invalid data is keyed in, the system immediately propts the user and the user has to again key in the data and the system will accept the data only if the data is correct. Validations have been included where necessary.

The system is designed to be a user friendly one. In other words the system has been designed to communicate effectively with the user. The system has been designed with pop up menus.
USERINTERGFACE DESIGN
It is essential to consult the system users and discuss their needs while designing the user interface:
USER INTERFACE SYSTEMS CAN BE BROADLY CLASIFIED AS:
1. User initiated interface the user is in charge, controlling the progress of the user/computer dialogue. In the computer-initiated interface, the computer selects the next stage in the interaction.

2. Computer initiated interfaces
In the computer initiated interfaces the computer guides the progress of the user/computer dialogue. Information is displayed and the user response of the computer takes action or displays further information.
USER_INITIATED INTERGFACES
User initiated interfaces fall into tow approximate classes:
1. Command driven interfaces: In this type of interface the user inputs commands or queries which are interpreted by the computer.

2. Forms oriented interface: The user calls up an image of the form to his/her screen and fills in the form. The forms oriented interface is chosen because it is the best choice.
COMPUTER-INITIATED INTERFACES
The following computer initiated interfaces were used:
1. The menu system for the user is presented with a list of alternatives and the user chooses one; of alternatives.

2. Questions answer type dialog system where the computer asks question and takes action based on the basis of the users reply.
Right from the start the system is going to be menu driven, the opening menu displays the available options. Choosing one option gives another popup menu with more options. In this way every option leads the users to data entry form where the user can key in the data.
ERROR MESSAGE DESIGN:
The design of error messages is an important part of the user interface design. As user is bound to commit some errors or other while designing a system the system should be designed to be helpful by providing the user with information regarding the error he/she has committed.

This application must be able to produce output at different modules for different inputs.
Performance Requirements:
Performance is measured in terms of the output provided by the application.

Requirement specification plays an important part in the analysis of a system. Only when the requirement specifications are properly given, it is possible to design a system, which will fit into required environment. It rests largely in the part of the users of the existing system to give the requirement specifications because they are the people who finally use the system. This is because the requirements have to be known during the initial stages so that the system can be designed according to those requirements. It is very difficult to change the system once it has been designed and on the other hand designing a system, which does not cater to the requirements of the user, is of no use.

The requirement specification for any system can be broadly stated as given below:
· The system should be able to interface with the existing system

· The system should be accurate

· The system should be better than the existing system
The existing system is completely dependent on the user to perform all the duties.
SELECTED SOFTWARE

Microsoft.NET Framework
The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet. The .NET Framework is designed to fulfill the following objectives:
· To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but Internet-distributed, or executed remotely.

· To provide a code-execution environment that minimizes software deployment and versioning conflicts.

· To provide a code-execution environment that guarantees safe execution of code, including code created by an unknown or semi-trusted third party.

· To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments.

· To make the developer experience consistent across widely varying types of applications, such as Windows-based applications and Web-based applications.

· To build all communication on industry standards to ensure that code based on the .NET Framework can integrate with any other code.
The .NET Framework has two main components: the common language runtime and the .NET Framework class library. The common language runtime is the foundation of the .NET Framework. You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness. In fact, the concept of code management is a fundamental principle of the runtime. Code that targets the runtime is known as managed code, while code that does not target the runtime is known as unmanaged code. The class library, the other main component of the .NET Framework, is a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the common language runtime into their processes and initiate the execution of managed code, thereby creating a software environment that can exploit both managed and unmanaged features. The .NET Framework not only provides several runtime hosts, but also supports the development of third-party runtime hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side environment for managed code. ASP.NET works directly with the runtime to enable Web Forms applications and XML Web services, both of which are discussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the runtime (in the form of a MIME type extension). Using Internet Explorer to host the runtime enables you to embed managed components or Windows Forms controls in HTML documents. Hosting the runtime in this way makes managed mobile code (similar to Microsoft ActiveX controls) possible, but with significant improvements that only managed code can offer, such as semi-trusted execution and secure isolated file storage.

The following illustration shows the relationship of the common language runtime and the class library to your applications and to the overall system. The illustration also shows how managed code operates within a larger architecture.
Features of the Common Language Runtime
The common language runtime manages memory, thread execution, code execution, code safety verification, compilation, and other system services. These features are intrinsic to the managed code that runs on the common language runtime.

With regards to security, managed components are awarded varying degrees of trust, depending on a number of factors that include their origin (such as the Internet, enterprise network, or local computer). This means that a managed component might or might not be able to perform file-access operations, registry-access operations, or other sensitive functions, even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an executable embedded in a Web page can play an animation on screen or sing a song, but cannot access their personal data, file system, or network. The security features of the runtime thus enable legitimate Internet-deployed software to be exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type- and code-verification infrastructure called the common type system (CTS). The CTS ensures that all managed code is self-describing. The various Microsoft and third-party language compilers

Generate managed code that conforms to the CTS. This means that managed code can consume other managed types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common software issues. For example, the runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. This automatic memory management resolves the two most common application errors, memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers can write applications in their development language of choice, yet take full advantage of the runtime, the class library, and components written in other languages by other developers. Any compiler vendor who chooses to target the runtime can do so. Language compilers that target the .NET Framework make the features of the .NET Framework available to existing code written in that language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today and yesterday. Interoperability between managed and unmanaged code enables developers to continue to use necessary COM components and DLLs.

The runtime is designed to enhance performance. Although the common language runtime provides many standard runtime services, managed code is never interpreted. A feature called just-in-time (JIT) compiling enables all managed code to run in the native machine language of the system on which it is executing. Meanwhile, the memory manager removes the possibilities of fragmented memory and increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications, such as Microsoft SQL Server and Internet Information Services (IIS). This infrastructure enables you to use managed code to write your business logic, while still enjoying the superior performance of the industry's best enterprise servers that support runtime hosting.
.NET Framework Class Library
The .NET Framework class library is a collection of reusable types that tightly integrate with the common language runtime. The class library is object oriented, providing types from which your own managed code can derive functionality. This not only makes the .NET Framework types easy to use, but also reduces the time associated with learning new features of the .NET Framework. In addition, third-party components can integrate seamlessly with classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you can use to develop your own collection classes. Your collection classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework types enable you to accomplish a range of common programming tasks, including tasks such as string management, data collection, database connectivity, and file access. In addition to these common tasks, the class library includes types that support a variety of specialized development scenarios. For example, you can use the .NET Framework to develop the following types of applications and services:
· Console applications.

· Scripted or hosted applications.

· Windows GUI applications (Windows Forms).

· ASP.NET applications.

· XML Web services.

· Windows services.
For example, the Windows Forms classes are a comprehensive set of reusable types that vastly simplify Windows GUI development. If you write an ASP.NET Web Form application, you can use the Web Forms classes.
Client Application Development
Client applications are the closest to a traditional style of application in Windows-based programming. These are the types of applications that display windows or forms on the desktop, enabling a user to perform a task. Client applications include applications such as word processors and spreadsheets, as well as custom business applications such as data-entry tools, reporting tools, and so on. Client applications usually employ windows, menus, buttons, and other GUI elements, and they likely access local resources such as the file system and peripherals such as printers.

Another kind of client application is the traditional ActiveX control (now replaced by the managed Windows Forms control) deployed over the Internet as a Web page. This application is much like other client applications: it is executed natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C/C++ in conjunction with the Microsoft Foundation Classes (MFC) or with a rapid application development (RAD) environment such as Microsoft Visual Basic. The .NET Framework incorporates aspects of these existing products into a single, consistent development environment that drastically simplifies the development of client applications.

The Windows Forms classes contained in the .NET Framework are designed to be used for GUI development. You can easily create command windows, buttons, menus, toolbars, and other screen elements with the flexibility necessary to accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual attributes associated with forms. In some cases the underlying operating system does not support changing these attributes directly, and in these cases the .NET Framework automatically recreates the forms. This is one of many ways in which the .NET Framework integrates the developer interface, making coding simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a user's computer. This means that binary or natively executing code can access some of the resources on the user's system (such as GUI elements and limited file access) without being able to access or compromise other resources. Because of code access security, many applications that once needed to be installed on a user's system can now be safely deployed through the Web. Your applications can implement the features of a local application while being deployed like a Web page.
VB.NET

Introduction

ACTIVE X DATA OBJECTS.NET

ADO.NET Overview
ADO.NET is an evolution of the ADO data access model that directly addresses user requirements for developing scalable applications. It was designed specifically for the web with scalability, statelessness, and XML in mind.

ADO.NET uses some ADO objects, such as the Connection and Command objects, and also introduces new objects. Key new ADO.NET objects include the DataSet, DataReader, and DataAdapter.

The important distinction between this evolved stage of ADO.NET and previous data architectures is that there exists an object -- the DataSet -- that is separate and distinct from any data stores. Because of that, the DataSet functions as a standalone entity. You can think of the DataSet as an always disconnected recordset that knows nothing about the source or destination of the data it contains. Inside a DataSet, much like in a database, there are tables, columns, relationships, constraints, views, and so forth.

A DataAdapter is the object that connects to the database to fill the DataSet. Then, it connects back to the database to update the data there, based on operations performed while the DataSet held the data. In the past, data processing has been primarily connection-based. Now, in an effort to make multi-tiered apps more efficient, data processing is turning to a message-based approach that revolves around chunks of information. At the center of this approach is the DataAdapter, which provides a bridge to retrieve and save data between a DataSet and its source data store. It accomplishes this by means of requests to the appropriate SQL commands made against the data store.

The XML-based DataSet object provides a consistent programming model that works with all models of data storage: flat, relational, and hierarchical. It does this by having no 'knowledge' of the source of its data, and by representing the data that it holds as collections and data types. No matter what the source of the data within the DataSet is, it is manipulated through the same set of standard APIs exposed through the DataSet and its subordinate objects.

While the DataSet has no knowledge of the source of its data, the managed provider has detailed and specific information. The role of the managed provider is to connect, fill, and persist the DataSet to and from data stores. The OLE DB and SQL Server .NET Data Providers (System.Data.OleDb and System.Data.SqlClient) that are part of the .Net Framework provide four basic objects: the Command, Connection, DataReader and DataAdapter. In the remaining sections of this document, we'll walk through each part of the DataSet and the OLE DB/SQL Server .NET Data Providers explaining what they are, and how to program against them.

The following sections will introduce you to some objects that have evolved, and some that are new. These objects are:
· Connections. For connection to and managing transactions against a database.
· Commands. For issuing SQL commands against a database.
· DataReaders. For reading a forward-only stream of data records from a SQL Server data source.
· DataSets. For storing, remoting and programming against flat data, XML data and relational data.
· DataAdapters. For pushing data into a DataSet, and reconciling data against a database.
When dealing with connections to a database, there are two different options: SQL Server .NET Data Provider (System.Data.SqlClient) and OLE DB .NET Data Provider (System.Data.OleDb). In these samples we will use the SQL Server .NET Data Provider. These are written to talk directly to Microsoft SQL Server. The OLE DB .NET Data Provider is used to talk to any OLE DB provider (as it uses OLE DB underneath).
Connections
Connections are used to 'talk to' databases, and are respresented by provider-specific classes such as SQLConnection. Commands travel over connections and resultsets are returned in the form of streams which can be read by a DataReader object, or pushed into a DataSet object.
Commands
Commands contain the information that is submitted to a database, and are represented by provider-specific classes such as SQLCommand. A command can be a stored procedure call, an UPDATE statement, or a statement that returns results. You can also use input and output parameters, and return values as part of your command syntax. The example below shows how to issue an INSERT statement against the Northwind database.
DataReaders
The DataReader object is somewhat synonymous with a read-only/forward-only cursor over data. The DataReader API supports flat as well as hierarchical data. A DataReader object is returned after executing a command against a database. The format of the returned DataReader object is different from a recordset. For example, you might use the DataReader to show the results of a search list in a web page.
DataSets and DataAdapters

DataSets
The DataSet object is similar to the ADO Recordset object, but more powerful, and with one other important distinction: the DataSet is always disconnected. The DataSet object represents a cache of data, with database-like structures such as tables, columns, relationships, and constraints. However, though a DataSet can and does behave much like a database, it is important to remember that DataSet objects do not interact directly with databases, or other source data. This allows the developer to work with a programming model that is always consistent, regardless of where the source data resides. Data coming from a database, an XML file, from code, or user input can all be placed into DataSet objects. Then, as changes are made to the DataSet they can be tracked and verified before updating the source data. The GetChanges method of the DataSet object actually creates a second DatSet that contains only the changes to the data. This DataSet is then used by a DataAdapter (or other objects) to update the original data source.

The DataSet has many XML characteristics, including the ability to produce and consume XML data and XML schemas. XML schemas can be used to describe schemas interchanged via WebServices. In fact, a DataSet with a schema can actually be compiled for type safety and statement completion.
DataAdapters (OLEDB/SQL)
The DataAdapter object works as a bridge between the DataSet and the source data. Using the provider-specific SqlDataAdapter (along with its associated SqlCommand and SqlConnection) can increase overall performance when working with a Microsoft SQL Server databases. For other OLE DB-supported databases, you would use the OleDbDataAdapter object and its associated OleDbCommand and OleDbConnection objects.

The DataAdapter object uses commands to update the data source after changes have been made to the DataSet. Using the Fill method of the DataAdapter calls the SELECT command; using the Update method calls the INSERT, UPDATE or DELETE command for each changed row. You can explicitly set these commands in order to control the statements used at runtime to resolve changes, including the use of stored procedures. For ad-hoc scenarios, a CommandBuilder object can generate these at run-time based upon a select statement. However, this run-time generation requires an extra round-trip to the server in order to gather required metadata, so explicitly providing the INSERT, UPDATE, and DELETE commands at design time will result in better run-time performance.
1. ADO.NET is the next evolution of ADO for the .Net Framework.

2. ADO.NET was created with n-Tier, statelessness and XML in the forefront. Two new objects, the DataSet and DataAdapter, are provided for these scenarios.

3. ADO.NET can be used to get data from a stream, or to store data in a cache for updates.

4. There is a lot more information about ADO.NET in the documentation.

5. Remember, you can execute a command directly against the database in order to do inserts, updates, and deletes. You don't need to first put data into a DataSet in order to insert, update, or delete it.

6. Also, you can use a DataSet to bind to the data, move through the data, and navigate data relationships
SQL SERVER

DATABASE
A database management, or DBMS, gives the user access to their data and helps them transform the data into information. Such database management systems include dBase, paradox, IMS, SQL Server and SQL Server. These systems allow users to create, update and extract information from their database.

A database is a structured collection of data. Data refers to the characteristics of people, things and events. SQL Server stores each data item in its own fields. In SQL Server, the fields relating to a particular person, thing or event are bundled together to form a single complete unit of data, called a record (it can also be referred to as raw or an occurrence). Each record is made up of a number of fields. No two fields in a record can have the same field name.

During an SQL Server Database design project, the analysis of your business needs identifies all the fields or attributes of interest. If your business needs change over time, you define any additional fields or change the definition of existing fields.
SQL Server Tables
SQL Server stores records relating to each other in a table. Different tables are created for the various groups of information. Related tables are grouped together to form a database.
Primary Key
Every table in SQL Server has a field or a combination of fields that uniquely identifies each record in the table. The Unique identifier is called the Primary Key, or simply the Key. The primary key provides the means to distinguish one record from all other in a table. It allows the user and the database system to identify, locate and refer to one particular record in the database.
Relational Database
Sometimes all the information of interest to a business operation can be stored in one table. SQL Server makes it very easy to link the data in multiple tables. Matching an employee to the department in which they work is one example. This is what makes SQL Server a relational database management system, or RDBMS. It stores data in two or more tables and enables you to define relationships between the table and enables you to define relationships between the tables.
Foreign Key
When a field is one table matches the primary key of another field is referred to as a foreign key. A foreign key is a field or a group of fields in one table whose values match those of the primary key of another table.
Referential Integrity
Not only does SQL Server allow you to link multiple tables, it also maintains consistency between them. Ensuring that the data among related tables is correctly matched is referred to as maintaining referential integrity.
Data Abstraction
A major purpose of a database system is to provide users with an abstract view of the data. This system hides certain details of how the data is stored and maintained. Data abstraction is divided into three levels.
Physical level: This is the lowest level of abstraction at which one describes how the data are actually stored.
Conceptual Level: At this level of database abstraction all the attributed and what data are actually stored is described and entries and relationship among them.
View level: This is the highest level of abstraction at which one describes only part of the database.
Advantages of RDBMS
· Redundancy can be avoided

· Inconsistency can be eliminated

· Data can be Shared

· Standards can be enforced

· Security restrictions ca be applied

· Integrity can be maintained

· Conflicting requirements can be balanced

· Data independence can be achieved.
Disadvantages of DBMS
A significant disadvantage of the DBMS system is cost. In addition to the cost of purchasing of developing the software, the hardware has to be upgraded to allow for the extensive programs and the workspace required for their execution and storage. While centralization reduces duplication, the lack of duplication requires that the database be adequately backed up so that in case of failure the data can be recovered.
FEATURES OF SQL SERVER (RDBMS)
SQL SERVER is one of the leading database management systems (DBMS) because it is the only Database that meets the uncompromising requirements of todays most demanding information systems. From complex decision support systems (DSS) to the most rigorous online transaction processing (OLTP) application, even application that require simultaneous DSS and OLTP access to the same critical data, SQL Server leads the industry in both performance and capability

SQL SERVER is a truly portable, distributed, and open DBMS that delivers unmatched performance, continuous operation and support for every database.

SQL SERVER RDBMS is high performance fault tolerant DBMS which is specially designed for online transactions processing and for handling large database application.

SQL SERVER with transactions processing option offers two features which contribute to very high level of transaction processing throughput, which are
· The row level lock manager
Enterprise wide Data Sharing
The unrivaled portability and connectivity of the SQL SERVER DBMS enables all the systems in the organization to be linked into a singular, integrated computing resource.
Portability
SQL SERVER is fully portable to more than 80 distinct hardware and operating systems platforms, including UNIX, MSDOS, OS/2, Macintosh and dozens of proprietary platforms. This portability gives complete freedom to choose the database sever platform that meets the system requirements.
Open Systems
SQL SERVER offers a leading implementation of industry standard SQL. SQL Servers open architecture integrates SQL SERVER and non SQL SERVER DBMS with industries most comprehensive collection of tools, application, and third party software products SQL Servers Open architecture provides transparent access to data from other relational database and even non-relational database.
Distributed Data Sharing
SQL Servers networking and distributed database capabilities to access data stored on remote server with the same ease as if the information was stored on a single local computer. A single SQL statement can access data at multiple sites. You can store data where system requirements such as performance, security or availability dictate.
Unmatched Performance
The most advanced architecture in the industry allows the SQL SERVER DBMS to deliver unmatched performance.
Sophisticated Concurrency Control
Real World applications demand access to critical data. With most database Systems application becomes contention bound which performance is limited not by the CPU power or by disk I/O, but user waiting on one another for data access . SQL Server employs full, unrestricted row-level locking and contention free queries to minimize and in many cases entirely eliminates contention wait times.
No I/O Bottlenecks
SQL Servers fast commit groups commit and deferred write technologies dramatically reduce disk I/O bottlenecks. While some database write whole data block to disk at commit time, SQL Server commits transactions with at most sequential log file on disk at commit time, On high throughput systems, one sequential writes typically group commit multiple transactions. Data read by the transaction remains as shared memory so that other transactions may access that data without reading it again from disk. Since fast commits write all data necessary to the recovery to the log file, modified blocks are written back to the database independently of the transaction commit, when written from memory to disk.
PROJECT DESIGN

SOFTWARE ENGINEERING PARADIGM APPLIED- (RAD-MODEL)
The two design objectives continuously sought by developers are reliability and maintenance.
Reliable System
1. Error avoidance: Prevents errors from occurring in software.

2. Error detection and correction: In this approach errors are recognized whenever they are encountered and correcting the error by effect of error, of the system does not fail.

3. Error tolerance: In this approach errors are recognized whenever they occur, but enables the system to keep running through degraded perform or by applying values that instruct the system to continue process.
Maintenance:
The key to reducing need for maintenance, while working, if possible to do essential tasks.
1. More accurately defining user requirement during system development.

2. Assembling better systems documentation.

3. Using more effective methods for designing, processing, login and communicating information with project team members.

4. Making better use of existing tools and techniques.

5. Managing system engineering process effectively.
Output Design:
One of the most important factors of an information system for the user is the output the system produces. Without the quality of the output, the entire system may appear unnecessary that will make us avoid using it possibly causing it to fail. Designing the output should process the in an organized well throughout the manner. The right output must be developed while ensuring that each output element is designed so that people will find the system easy to use effectively.

The term output applying to information produced by an information system whether printed or displayed while designing the output we should identify the specific output that is needed to information requirements select a method to present the formation and create a document report or other formats that contains produced by the system.
Types of output:
Whether the output is formatted report or a simple listing of the contents of a file, a computer process will produce the output.
· A Document

· A Message

· Retrieval from a data store

· Transmission from a process or system activity

· Directly from an output sources
Layout Design:
It is an arrangement of items on the output medium. The layouts are building a mock up of the actual reports or document, as it will appear after the system is in operation. The output layout has been designated to cover information. The outputs are presented in the appendix.
Input design and control:
Input specifications describe the manner in which data enter the system for processing. Input design features will ensure the reliability of the systems and produce results from accurate data, or thus can be result in the production of erroneous information. The input design also determines whenever the user can interact efficiently with this system.
Objectives of input design:
Input design consists of developing specifications and procedures for data preparation, the steps necessary to put transaction data into a usable from for processing and data entry, the activity of data into the computer processing. The five objectives of input design are:
· Controlling the amount of input

· Avoiding delay

· Avoiding error in data

· Avoiding extra steps

· Keeping the process simple
Controlling the amount of input:
Data preparation and data entry operation depend on people, because labour costs are high, the cost of preparing and entering data is also high. Reducing data requirement expense. By reducing input requirement the speed of entire process from data capturing to processing to provide results to users.
Avoiding delay:
The processing delay resulting from data preparation or data entry operations is called bottlenecks. Avoiding bottlenecks should be one objective of input.
Avoiding errors:
Through input validation we control the errors in the input data.
Avoiding extra steps:
The designer should avoid the input design that cause extra steps in processing saving or adding a single step in large number of transactions saves a lot of processing time or takes more time to process.
Keeping process simple:
If controls are more people may feel difficult in using the systems. The best-designed system fits the people who use it in a way that is comfortable for them.
NORMALIZATION
It is a process of converting a relation to a standard form. The process is used to handle the problems that can arise due to data redundancy i.e. repetition of data in the database, maintain data integrity as well as handling problems that can arise due to insertion, updation, deletion anomalies.

Decomposing is the process of splitting relations into multiple relations to eliminate anomalies and maintain anomalies and maintain data integrity. To do this we use normal forms or rules for structuring relation.
Insertion anomaly: Inability to add data to the database due to absence of other data.
Deletion anomaly: Unintended loss of data due to deletion of other data.
Update anomaly: Data inconsistency resulting from data redundancy and partial update
Normal Forms: These are the rules for structuring relations that eliminate anomalies.
First Normal Form:
A relation is said to be in first normal form if the values in the relation are atomic for every attribute in the relation. By this we mean simply that no attribute value can be a set of values or, as it is sometimes expressed, a repeating group.
Second Normal Form:
A relation is said to be in second Normal form is it is in first normal form and it should satisfy any one of the following rules.
1. Primary key is a not a composite primary key

2. No non key attributes are present

3. Every non key attribute is fully functionally dependent on full set of primary key.
Third Normal Form:
A relation is said to be in third normal form if their exits no transitive dependencies.
Transitive Dependency: If two non key attributes depend on each other as well as on the primary key then they are said to be transitively dependent.

The above normalization principles were applied to decompose the data in multiple tables thereby making the data to be maintained in a consistent state.
INTRODUCTION TO RDBMS
RDBMS is the acronym for relational Database Management System. The concept of Relational Database is known since 1980s. IBMs Dr.E.F.CODD first proposed it in 1970.In 1985-computer world article Dr. E.F.CODD presented 12 Codd rules that Database must satisfy to be considered truly relational. These 12 Codd rules are:
The Information rule: - All information is explicitly and logically represented in tables as data values.
The rule of guaranteed access: - Every item of data must be logically addressable.
The system of treatment of null values: - The RDBMS must be able to support null values.
Database description rule: - Description of a database is maintained using the same logical structures with which data was defined by the RDBMS.
Comprehensive data sub language: - The system must support the following:
1. Data definition

2. View definition
The view-updating rule: - All views that are theoretically must be updateable by the system.
Insert and update rule: - A single operand must hold good for all retrieval, update, and insert activities.
Physically independence rule: - Application programs must remain unimpaired when any changes are made in storage representation.
Logically data independence rule: - The changes that are made should not affect the user ability to work with the data.
The integrity independence rule: - The integrity constraint should be stored in the system catalog as a table.
The distribution rule: - The system must be able to access or manipulate the data i.e. distributed in other systems.
The non-subversion rule: - It states that different levels of the language cannot subvert or bypass the integrity rules and the constraints.
Introduction to Oracle
Oracle is a multi-user relational database management system. It is a software product that specializes in managing a single, shared set of information among many concurrent users. Oracle products are based on a concept known as client /server technology. The concept involves segregating the processing of an application between two systems. One performs all activities related to the database (server) and the other performs the activities that help the user to interact the application (client).

A client or front-end database application also interacts with the database by requesting and receiving information from the database server. It acts an interface between the user and the database.

The database server and back-end is used to manage the database tables optimally among multiple clients who concurrently request the server for the same data. It also enforces data integrity across all client applications and controls database access and other security requirements.
CODDS RULES SUPPORTED BY ORACLE:
· Information rule

· Guaranteed access

· Systematic treatment of null values

· Database description rules

· Comprehensive data sub languages

· Insert and update rule

· Distribution rule

· Non-subversion rule
CODDS RULES PARTIALLY SUPPORTED BY ORACLE:
· View updating rule

· Physical data independence

· Logical data independence

· Integrity independence
FEATURES OF ORACLE

ORACLE IS PORTABLE:
Oracle RDBMS is available on wide range of platforms ranging form PC or Super Computer stand as multi-user Network loadable module for Novel NetWare. If you develop application one system you can run the same application on any system without any modification.
ORACLE IS COMPATIBLE:
Oracle commands can be used communication with IBM DB2 mainframe RDBMS, which is different from oracle, i.e.; Oracle is compatible with DB2.
MANAGABLE SECURITY:
To protect against unauthorized database access and use, Oracle provides fail-safe security using grant and revoke to limit the access of information down to the row and column levels. Views are valuable features for limiting access to the primary tables in the database.
LARGE DATABASE AND SPACE MANAGEMENT CONTROL:
Oracle supports the largest of database, potentially hundreds of gigabytes in size. To make efficient use of expensive hardware devices it allows full control of space usage.
FEATURES OF ORACLE 8.0:
Oracle supports the largest to ORDBMS with the following new features:
· Abstract data types

· Collections

· Partitioned tables

· Scope references

· Object Views

· Large objects

· New indexes

· Referenced cursor

· Triggers
INTRODUCTION TO SQL
SQL is the language that all users must use to access data with in oracle database. SQL was developed in a prototype relational database management, systems R, by IBM in the mid of 1970s. System R was described by Dr.E.F.CODD in November 1976 journal of R&D. In 1979 Oracle Corporation introduced the first commercial implementation of SQL.

American national standard institute (ASNL) adapted SQL as the standard language for relational database management systems in October 1986.
FEATURES OF SQL:
· SQL is a non-procedural language i.e.; you specify what information you require, not to get it.

· SQL is a language for all users.

· SQL is a common language for all relational database.

· SQL is a data administration language that defines the structure of the database, controls the users to accept the data.

· SQL is a client/server language that allows application programs on PC s connected via LAN to communicate with the database servers that stores shared data.
SQL is used for storing and retrieving information in Oracle. A table is a primary database object of SQL that is used to store data.
TYPES OF SQL COMMANDS:
SQL commands are divided into the following categories:
· Data Definition Language

· Data Manipulation Language

· Transaction Control Language

· Session Control Language
Data Definition Language: DDL statements define and maintain objects and drop objects when they are no longer needed. Examples of this type of commands are CREATE, ALTER, DROP commands.
Data Manipulation Language: DML commands are the most frequently used SQL commands. This are used to query and manipulate existing objects like tables. Examples of these commands are INSERT, SELECT, UPDATE and DELETE.
Transaction Control Language: A transaction is a logical unit of work. All changes made to the database can be referred to as a transaction. Transaction control statements manage the changes made by DML statements. These Statements are used for controlling data stored in the database. Examples these types of commands are COMMIT ROLLBACK, SAVEPOINT etc.
Data Control Language: DCL provides users with privilege commands. The owner of database like tables has the sole authority over them. The owner can allow other database users access to the objects as per his/her discretion. Examples of these commands are GRANT, REVOKE.
Session Control language: SCL allows a user to control the properties of his current session including enabling and disabling roles and changing language settings. Examples of these commands are ALTER SESSION, SET ROLE.
Data Dictionary
After carefully understanding the requirements of the client the the entire data storage requirements are divided into tables. The below tables are normalized to avoid any anomalies during the course of data entry.
DATA DICTIONARY
1. EMP_MASTER
This data structure is used to create an id of the new employee details. The field descriptions are as follows:
2. USER_MAST
This data structure is used to Create User Name and Password of users.The field descriptions are as follows:
3. COMP_MAST
This data structure is used to have the id of the net work system .The field descriptions are as follows:
4. LOGIN
This data structure is used to have the login details of all the users that registered .The field descriptions are as follows:
5. LOGOUT
This data structure is used to have the logout details of all the users that registered .The field descriptions are as follows:
6. MSG_MAST
This data structure is used to have the message details of all the users .The field descriptions are as follows
7. DEPT_MAST
This data structure is used to have the list of all departments in company. The field descriptions are as follows:
DATA FLOW DIAGRAM:
A data flow diagram is graphical tool used to describe and analyze movement of data through a system. These are the central tool and the basis from which the other components are developed. The transformation of data from input to output, through processed, may be described logically and independently of physical components associated with the system. These are known as the logical data flow diagrams. The physical data flow diagrams show the actual implements and movement of data between people, departments and workstations. A full description of a system actually consists of a set of data flow diagrams. Using two familiar notations Yourdon, Gane and Sarson notation develops the data flow diagrams. Each component in a DFD is labeled with a descriptive name. Process is further identified with a number that will be used for identification purpose. The development of DFDs is done in several levels. Each process in lower level diagrams can be broken down into a more detailed DFD in the next level. The lop-level diagram is often called context diagram. It consists a single process bit, which plays vital role in studying the current system. The process in the context level diagram is exploded into other process at the first level DFD.

The idea behind the explosion of a process into more process is that understanding at one level of detail is exploded into greater detail at the next level. This is done until further explosion is necessary and an adequate amount of detail is described for analyst to understand the process.

Larry Constantine first developed the DFD as a way of expressing system requirements in a graphical from, this lead to the modular design.

A DFD is also known as a bubble Chart has the purpose of clarifying system requirements and identifying major transformations that will become programs in system design. So it is the starting point of the design to the lowest level of detail. A DFD consists of a series of bubbles joined by data flows in the system.
DFD SYMBOLS:
In the DFD, there are four symbols
1. A square defines a source(originator) or destination of system data

2. An arrow identifies data flow. It is the pipeline through which the information flows

3. A circle or a bubble represents a process that transforms incoming data flow into outgoing data flows.

4. An open rectangle is a data store, data at rest or a temporary repository of data
CONSTRUCTING A DFD:
Several rules of thumb are used in drawing DFDs:
1. Process should be named and numbered for an easy reference. Each name should be representative of the process.

2. The direction of flow is from top to bottom and from left to right. Data Traditionally flow from source to the destination although they may flow back to the source. One way to indicate this is to draw long flow line back to a source. An alternative way is to repeat the source symbol as a destination. Since it is used more than once in the DFD it is marked with a short diagonal.

3. When a process is exploded into lower level details, they are numbered.

4. The names of data stores and destinations are written in capital letters. Process and dataflow names have the first letter of each work capitalized
A DFD typically shows the minimum contents of data store. Each data store should contain all the data elements that flow in and out.

Questionnaires should contain all the data elements that flow in and out. Missing interfaces redundancies and like is then accounted for often through interviews.
SAILENT FEATURES OF DFDs
1. The DFD shows flow of data, not of control loops and decision are controlled considerations do not appear on a DFD.

2. The DFD does not indicate the time factor involved in any process whether the data flows take place dai