Security for certificate management

Chapter 8 A case study: Implementation a prototype of XML security for certificate management
This chapter records the implementation a prototype of XML security for certificate management. The implementation includes the requirements analysis, the system architecture of XML security for certificate management, relative process and algorithms, and the implementation results.
8.1 Introduction
Based on theories of previous chapters, this chapter describes a prototype of XML security that allows a programmer to specify the security details of XML data, and has solved portions of problems existing in XML security specifications. The prototype is described with a working case study of calibration certificate management. It includes calibration certificate creation, editing, retrieve, and security management under hierarchical environment. In particular, parts of our work are based on the pioneering XML security in certificate management approach (Lu, et. al 2006), and an approach to XML key management specification in X-Certificator (Lu, et. al 2005).

Figure 8.1 is a real calibration certificate in XML format, some details has been omitted. The tasks related to a calibration certificate management are shown in figure 8.2.

The system consists of five tasks: authorization (T1), certificate retrieve (T2), certificate editing or creation (T3), certificate information check (T4), and certificate information confidentiality (T5).

The system provides the calibration certificate content and security management under hierarchical environment. This means that there are more than one person will handle a single certificate in workflow system. This process depends on workflow of calibration certificate generation. The prototype will provide the interface for certificate editing, transforming, saving, loading, and searching. XML security enables the secure transmission of information at element level of a document for a certificate. Integrity ensures the content of certificate has not been changed, this include the structural integrity, and context referential integrity. Authentication is satisfied by using digital signature. This functionality should provide digital signature for any portions of a certificate, and further validate the signed certificate. The signature should enable a single signature on an XML data, or multi-signature based on natural signing process. XML encryption will be used to protect sensitive information of a certificate. This service includes encrypt or decrypt an XML-based calibration certificate. The system can retrieve relative information of a certificate weather it is in cipher block or plaintext.
8.2 System requirements
The detailed requirements of the system is summarized as follows.
· User authorization
When user login the system, the system will judge his or her authorization with provided public key information. This process is used to decide the privilege of a user.
· Certificate generation and editing
Certificate information can be created and edited by an authorized user.
· Certificate transforming
A certificate can be viewed in HTML, XHTML, and PDF format. This requirement needs that an XML-based certificate can be transformed to other format which easy to be viewed.
· Certificate integrity
As a certificate described in XML format, it is need to protect integrity of certificate information, not only considering content integrity, but also protecting structural integrity and context referential integrity.
· Certificate authentication
Certificate authentication provides assurance about the claimed identity of an entity. In authentication, a principal aims to prove its identity to a verifier. The corroboration that the entity responsible for the creation of a set of certificate data, which is the whole XML-based certificate data or portion of it, is the one claimed. The system allow an authorized user verify the validation of certificate.
· Certificate confidentiality
Ensure that sensitive information of a certificate content or structure may not be viewed by unauthorized person. Provide mechanism to keep certificate information or portions of information confidential. The sensitive information can be viewed by specific users.
· Certificate retrieve
Retrieve a certificate by user querying request. A query processor can identify the contents of encrypted certificate or a certificate in plaintext.
8.3 System architecture
Based on requirement above, the system architecture is shown in figure 8.3. The architecture consists of six modules. The functionality of each module is described as follows.
· Certificate management module
Certificate management module is the centre of the system. It provides calibration certificate generation, editing, updating, and certificate retrieve service.
· XML data integrity module
XML data integrity provides fundamental to XML signature. Before signing a certificate, this module generates digest value for certificate information to be signed. The digest value consists of three parts: content integrity, structural integrity, and context referential integrity. The three parts combined by using a concatenated hash function.
· XML signature and verification module
XML signature and verification service provide the XML signature based on presented XML data integrity scheme, and signature verification process. After identified the user identity, this service will return signed XML data or verification result for a signed XML data.
· XML encryption and decryption module
XML encryption and decryption service provide data confidentiality. After authenticated user identity, this service will return encrypted XML data or decrypted XML data.
· Certificate retrieve
The certificate retrieve is completed by the module certificate searching. Client can choose the conditions for certificate, the system return the certificate or portions of information which satisfy client's request. The retrieve can be done on information of plain text or encrypted block. If the retrieve are relative to encrypted information, it is need the client submit a private key at the same time.
· Background database
Because the calibration certificate is in XML format, the system choose XML native database as background database service. The deployed product is developed by MarkLogic. It supports flexible XQuery over stored XML document.
8.4 Implementation

8.4.1 Class diagram
The system consists of 19 major classes as shown in figure 8.4. It can be divided to certificate management, XML data integrity, XML data authentication, and XML data confidentiality according to their functionality. In this section, mainly introduces the classes relative to XML security.
· Certificate management
There are 8 classes relating to certificate management: XML document definition, database connection, certificate register, certificate management, certificate retrieve, key generation, and certificate status query.
· XML data integrity
There are three classes relating to XML data integrity. The class CI is used to generate data content integrity, STI is used to generate structure related integrity information, and CRI is used to generate context referral element integrity.
· XML data authentication
XML data authentication related classes include signature generation, signature validating, CSR based XML signature, and multisignature generation.
· XML data confidentiality
XML data confidentiality related classes include XML encryption, XML data decryption, and encrypted XML data query class. It provides certificate secret and certificate retrieve process.
8.4.3 XML data authentication
In this section, XML single signature and XML multisignature are discussed separately, and mainly focus on XML signature generation and verification.
· XML single signature
The primary elements of XML signatures are digital signature information and digest value information. Signature elements consist of "SignedInfo" with digital signature information, "SignatureValue" with actual digital signature value and "KeyInfo" with digital signature key information (Bartel, et. al, 2008). An XML Signature is created by the following steps:

Step 1: A digest value is calculated for each XML data fragment being signed.

This involves first applying a set of transforms to the XML fragment, then calculating the digest on the transformed XML fragment. The transformations ensure the XML fragment is in a normalized form. This usually includes XML canonicalization. The information from this step is represented using a ds:Reference element.

Step 2: The ds:Reference elements from the previous stage are added to a ds:SignedInfo element. A digest value is calculated on the ds:SignedInfo element which involves first applying XML canonicalization. This calculated digest value is signed using the signer's private key to create the ds:SignatureValue element. A ds:KeyInfo element is used to specify which key was used to create the signature. The ds:SignedInfo, ds:SignatureValue and ds:KeyInfo elements are added to a ds:Signature element which is the resulting signature.

When user wants to verify a signature, the following steps can be executed.

Step 1: A digest value is calculated for each ds:Reference element within the signature. This involves applying the transforms specified in the reference, then calculating the digest value on the transformed XML fragment. The calculated digest value is compared to the one that is within the ds:Reference element. When they don't match, the signature validation fails.

Step 2: A digest value is calculated on the ds:SignedInfo element. This involves first applying canonicalization on this element. The digest value of the ds:SignedInfo element is retrieved from the signature value using the signer's public key. This digest value is compared with the calculated digest value. When they don't match, the signature validation fails.
· XML multisignature
XML single signature only satisfies the requirement of one user authenticating an XML data. Most situation, there is need multiple users to authenticate a single XML data, thus, XML multisiganture is essential. Based on presented XML multisignature scheme in chapter 5, this section also gives a description on how to implement XML multisignature. The process is as shown in figure 8.7.

The process has the following roles: a group of signers, a system authority (SA), a XDD, and a signature collector (SC). The services provided by SA are to initialize system parameters, and to generate the secret keys and public keys for the group and the signer. The services provided by XDD are to decompose the XML data to be signed into a set of sub-data according to possible XPath in DTD. The services provide by SC are to collect and verify the personal signatures generated by the signers, and to construct a multisignature for the XML data from these verified personal signature. For simplicity, it is assumed that all signers trust SA and SC. The proposed scheme operates through the following three stages: the secret key/public key generation stage, the multisignature generation stage, and the multisignature verification stage. As shown in figure 8.7, signers in same group can sign parallel, the different group sign in sequential. This signing model can satisfy multisignature generation in a natural process.
· Presentation for signed results
The presentation for XML signature view is by using XSLT technology. XSL transformation can be performed on an XML data source and generate a result tree. A general application of XSLT is transform XML data into HTML or XHTML. The basic steps for transformation are shown in figure 8.8. Firstly, the signed XML data is validated against the XML signature schema as defined in appendix C. Then get the basic information of each signature in XML data and delivered to XSLT, also the XPath expressions of the signatures are extracted from the element 
8.4.4 XML data encryption and decryption process
Encryption can be performed on different types of data, not necessarily XML data. The XML Encryption specification defines how encryption is applied to XML data. It specifies the processes for encrypting and decrypting XML data and the representation of the encryption result in XML (Imamura, et. al, 2002).

Step 1: A random session key is generated.

Step 2: The data is encrypted using a symmetric algorithm with the session key.

Symmetric encryption is used for the data for better performance. The encrypted data is represented using the xenc:EncryptedData element.

Step 3: The session key is encrypted using an asymmetric algorithm with the public key of the receiver. The encrypted session key is represented using the enc:EncryptedKey element. The xenc:EncryptedKey element can use a ds:KeyInfo element to specify which key was used. The encrypted key can be added to the ds:KeyInfo element of the xenc:EncryptedData element or it can exist independently.
8.5 Implementation result

8.5.1 Environment of development
The prototype was developed on a PC with a 2.39 GHz Pentium (R) 4 processor, 0.99GB of RAM, and the MS Windows XP operating system. The programming language is the C#.net. The background database selected as MarkLogic 3.1.
8.5.2 Implementation results
This subsection presents the implementation results according to above system architecture and algorithms. Based on the system architecture, the system interface is shown in figure 8.12. The functionality of the system consists of five modules: certificate editing, user authorization, certificate integrity assurance and authentication, certificate information confidentiality, and certificate retrieve.
8.5.2.1 Certificate editing
The left side of the main interface in figure 8.12 provides calibration certificate creation. The basic information for a certificate includes title, description, reference number, issue authority, data information, measurements, results, and so on. After inputting the information, user click on button "Save" to save created certificate. With the help of XSLT, the certificate can be viewed in PDF, XHTML format. User can open an existing certificate through menu item "File", and the opened XML data will be displayed on right side of the interface.
8.5.2.2 User authorization
After a certificate generated, the administrator can assign the role of each user for access the certificate. When a user login as am administrator, then he can open menu item "Management" and click the sub item "Authorization" as the result shown in figure 8.13.

Firstly, the administrator can choose the user name through the list;

Secondly, he selects the certificate information at the left side in figure 8.13;

Thirdly, he can assign the role for the user with selecting the privilege items.

Through three steps above, the system store the privilege of each user for different certificate information. When a user do some operation later, the system check his or her privilege firstly, if the operation forbidden, system will give an information as shown in figure 8.14, otherwise, the operation will be done successfully.
8.5.2.3 Certificate information integrity and authentication
Certificate authentication is completed based on certificate integrity. This means that before signing a certificate, user should generate the certificate integrity results, and then sign it. When user selects "Signing" under the menu item "Signature", the system will show the interface as in figure 8.15.

The left side of figure 8.15 is the XML data which need to be signed. The contents referential elements is shown in right side of figure 8.15. When user selects an element at left side, then right side will display the relative elements automatically according to default records. User can delete or add the new relative XML data in practice. This improves the flexibility of contents referential integrity. Thus, this process can be summarized in three steps as follows.

Firstly, user needs to choose XML data which need to be signed by selecting possible XPath listed in list-box. Then user can select context relative XML elements. Finally, through clicking on "confirm" button, system will generate integrity results.

Based on generated integrity results, the system can perform a signing process or verifying process as shown in figure 8.16. The right side in figure 8.16 is the signed result based on integrity CRI, the signed results can be verified by the user. As shown in figure 8.16, after signed the certificate of calibration, the user verified it successfully.

The following contents depict the detailed components in the signature result based on CRI and the details of CRI generation. A completely integrity results and signed results based on CRI can be found in figure 8.17.
8.5.2.4 Certificate information confidentiality
When sensitive information needs to be encrypted, user can click on menu item "Encryption". Firstly, the system let user to load a public key, and then select the nodes need to be encrypted. The encryption result is shown in figure 8.18. The original XML data has been replaced by the element "EncryptedData". The element "EncryptedData" includes "EncryptedKey", and the "CipherData". The element "EncryptedKey" is the encrypted session key using algorithm RSA with public key. The element "CipherData" is the encrypted XML data using session key with algorithm AES-256. In figure 8.18, the encrypted element is "CertificateDate". The original XML data element "CertificateDate" can be viewed by process of decryption and relative private key. Through click the "Decrypt" menu item in "Encryption", user can get the original XML data.
8.5.2.5 Certificate retrieve
The system also provides functionality of certificate retrieve as shown in figure 8.19. The left side is used to input the query condition, and the right side is used to display queried results.

The querying process can be executed on plaintext or encrypted XML data according to the scheme described in chapter 6. When user input the condition of query, the system will search the certificate which has been stored in database MarkLogic. As shown in figure 8.19, the querying condition is the "CertificateDate", and the queried results is displayed with encrypted XML data.
8.6 Discussion and analysis
The relationship of XML data integrity, authentication, and confidentiality is an important factor effecting the generation of each result. Generally speaking, XML data integrity is the fundamental of XML digital signature. Actually, XML signature signs the digest value of XML data instead of XML data itself; digest value is used to check the integrity of XML data. The sequence for XML signature and XML encryption generation is various. However, different sequence could generate totally different result. This section discusses the relationship of XML data integrity, authentication, and confidentiality.
8.6.1 The fundamental for XML signature
The major aim of XML digital signature is to ensure XML data authentication. Strictly speaking, besides ensuring XML data authentication, XML signature also provides support to XML data integrity. XML data integrity is the fundamental for XML signature. Figure 8.20 shows the integrity position in XML signature.

Figure 8.20 shows that the original XML data and the signature transferred to the recipient. The digest value generated by one-way hash function is used to ensure XML data integrity, and which was encrypted with the signer's private key. The recipient first uses the signer's public key to decrypt the hash result, and uses the same hashing algorithm that generated the original hash value to generate a new hash value of the same XML data, through comparing the new hash result against the original hash value, the integrity is ensured.

Compared to traditional data integrity, the presented XML data integrity model in chapter 5 is advantage of preventing XML signature tampering. Without the structure integrity and context-referral integrity, it is easy to copy a signature into another XML data and still keep the signature validating. Thus, the XML data integrity is a fundamental for XML signature.
8.6.2 The sequence for XML signature and XML encryption
Anyone can sign or encrypt portions of an XML data at any order, which mainly are encrypted-then-signed, and signed-then-encrypted. However, the signing or encryption sequence will generate completely different results. The principle for XML signature presented by W3C is the practicable rules for XML signature application (Bartel et al., 2008). It has presented approach how to handle different sequence relating to XML signature and XML encryption as follows.
· Principle 1: Only what is "Seen" should be Signed
XML signature signs any information indicated by a transform: "only what is "seen" should be signed". This means that a user only signs the information which he or she can understand.
· Principle 2: "See" What is Signed
"Persons and automated mechanism that trust the validity of a transformed document on the basis of a valid signature should operate over the data that was transformed (including canonicalization) and signed, not the original pre-transformed data. This recommendation applies to transforms specified within the signature as well as those included as part of the document itself" (Bartel et al., 2008).
8.6.2.1 Encrypted-then-signed
No one should be asked to apply sign a data that he or she did not see. This situation opposite the basic principles of Only What is "Seen" should be signed. When a data is encrypted, a user can not infer the information through the cipher text. Thus, the encrypted-then-signed is meaninglessness in practice.
8.6.2.2 Signed-then-encrypted
If one intend to sign the plain text which is later encrypted, use the transform specified by the W3C (Hughes et. al, 2002). It has been noted by David Solo that both XML encryption and XML signature can be performed on an XML data in any order and any time. For example, when a user wishes to order and pay for a product from a company using the trusted payment system Paypal. The company creates an order form including the product name, quantity, price, and account information. The company signs all of these information, and encrypt the account information for Paypal only. The company send the order form to the user for confirmation with user's signature. To validate both signatures, Paypal will have to know the encrypted information for validating the company's signature.

However, encryption applied to the signed content after a signature may result a signature not to be verifiable, it is need to decrypt the encrypted XML data before the signature is verified. Thus, it is need a mechanism to decrypt only signed-then-encrypted portions. There are two kinds of situations; firstly, the encryption and signature order can be derived directly from the content. Secondly, encrypted content is the signed resources, and it is difficult to derive it directly from the content, which defined as order issue within signed resources.
Order can be derived from content
It means that the sequence of encryption and signature can be derived directly from the content. For example, when ds:Digestvalue element or a part of ds:SignedInfo element is encrypted, or the whole signature results is encrypted, the order is obvious, which means that without decryption, signature verification is not possible to be applied. Under this situation, just decrypt content and then validate it.

The content above, it is obvious need to decrypt the content line 11 before validate the signature expressed on line 10. Under this situation, the decryption must be done; otherwise, the signature verification cannot be applied.
Order issue within signed resources
The specification decryption transform for XML signature is defined by W3C to propose a resolution to the decryption and signature verification order issues in signed XML data. It can be handled using following rules.
8.7 Summary
This chapter records the implementation a prototype of XML security for certificate management. The XML security system is designed and implemented conforming to the calibration certificate management. The system requirements has been described. Based on the requirements, this chapter designed the system architecture and algorithms relative to certificate integrity, authentication, confidentiality, and certificate retrieve. The prototype is completed based on c#.net and Marklogic 3.0 native XML database system. The relationship of XML data integrity, authentication, and confidentiality also has been discussed at the end.

