System Management 

Managing the Software Enterprise 
1. Explain what you should now do to your computer system. What tools should you use, if any? 
The following maintainability assessment index indicates a total score of 388, which is greater than the ideal of 300 which indicates the system is difficult to maintain and evolve. In particular priority should be given to areas that have individual scores between 8-10 of which there are three: 
1. Application Complexity (8) 
2. Change History Documentation (9) 
3. Code Annotation (8) 
There are two choices that can be undertaken with the system either it is to be phased out and closed down or it could be re-engineered. The assumption has been made that this system is business critical so will be required to be supported and maintained. Re-engineering will require recovery and rejuvenation which will involve the re-documentation, recovery and abstraction of the design. 
The key components of activity that will take place in the re-engineering process will follow this diagram: 


All of these activities can be undertaken with the aid of tools, which can include creating call graphs, maps of the software structure showing dependencies. This may also include using execution tracers to identify what happens as the software executes in different parts of the programme. 
From a quick search on the internet the following tools can be used in particular for creating source code maps which can provide a visual representation but also any associations. They are: nWire for Java: Code Exploration for Eclipse. This tool provides the following visual representation. 

Another tool with a similar benefits is Architexa. This tool boasts the ability to help you work with through a tool suite that builds useful diagrams to help developers Quickly Understand Code and Document in Seconds. It has the following visual representations. 

When looking at the use of call graphs to provide information for re-engineering a tool such as the following provided by Semantic Design would enable to understand how the system works also to identify any structure design complexity created through the cohesion and coupling is used within the system. The following is an example of a call graph for a system. 

There are many tools for each given scenario to allow for better understanding of the activities that need to take place in the re-engineering process. Simple Google or Bing searches will provide a proliferation of tools that can meet any budget or scale size project. For example ANZ required the ability to map the dependencies created on its legacy COBOL system to its many web pages offered. Semantic provided the solution with a simple mapping tool that allows the ability to easily see where these are now and any future engineering of the system will be better understood to ensure risk is managed. 

Many of these tools and other supplied by utilise either Halstead’s Software Science or McCabes cyclomatic complexity metrics and measures created by others depending on what is being reviewed. The key step is to get the current information to within the parameters deemed acceptable e.g. 2-7 but the combined weighted scores would need to be less than 300 for it to be maintainable. Priority of the remaining areas should then focus on those that are significantly weighted so that they although below the threshold would not escalate the weighted average above 300. These would include architecture documentation and data structure complexity. These could be assumed to improve indirectly as they are closely linked to the 3 areas that would be redressed. 
References: 
http://www.cs.auckland.ac.nz/compsci702s1c/lectures/ewan/cs702-notes-lec05-ccn.pdf 
2. Write a couple of pages evaluating the maintainability assessment method outlined above, explaining how it could be improved. (5 marks) (i.e. make reference to) any sources you use. 
The method used to develop the table was based on Halstead Software Science (HSS) which is one of the most widely used methodologies. Although it is highly popular it has proved to have limitations once you add scale to software systems and also the use of different programming languages to mention a couple. The metrics are limited to the internal characteristics of a system and are based on empirical data. It can also suffer from a lack of standardized mapping systems (counting method) e.g.. Do we count physical or logical lines of code etc. Further limitations include; when trying to apply a metric of empirical data to poorly understood attributes they must be specific to be meaningful for example reusability. There is a difficulty in finding a metric that is useful e.g. If you change the context of an environment you cannot assume they will perform at the same levels. A further issue identified by Kafura & Canning is that code metrics can be seen as useful for testing and maintenance phases but often come too late to address design decisions which may be fatal flaws later in the software lifecycle. In an article published by Linda Westfall she discusses that “appropriately selected metrics can help both management and engineers maintain their focus on their goals”. 
HSS is seen to be primarily based on a token count of activity versus the following options of other approaches to gathering metrics which are based on analysis of patterns. To ensure that a thorough assessment is made using some analysis of patterns the following are explained: McCabe (Cyclomatic Complexity Metric), McClure (invocation metric), Henri-Kafuras (information flow metric), Woodfield (review metric), Cant, Jeffery and Henderson Sellers (cognitive processes) or would be useful additions to the above. 
McCabes cyclomatic complexity software metric (CCN) was developed by Thomas McCabe Snr to indicate the complexity of a program, in particular to provide a measure to help understand linearly the independent paths through the flowgraph. Flowgraphs are described as directed graphs that can be used to model control flow of a system (program) and can provide useful information about the source code. The complexity is defined using the following formula: 
M = E − N + 2P, where 
M = Complexity 
N = the number of nodes of the graph 
E = the number of edges of the graph 
P = the number of connected components 
Alternatively it could be completed by using a graph which shows how the exit point is connected back to the entry point. E.g.. The following flowgraph is deemed a strongly connected due to its loop back to entry. 

McClures invocation complexity is based on the possible execution paths in a program and the difficulty of determining the path of an arbitrary set of input data. Henri-Kafuras information flow metric measures the interconnectivity between two procedures or functions. This may be caused by a data structure of a procedure call, these may cause complexity. Woodfields review metric measures the difficulty of understanding the system. The more complex it is the more time it takes to understand it. Finally, Cant, Jeffery and Henderson Sellers present a different approach to measuring complexity by measuring the cognitive processes involving the developer or maintainer. Each one of the complexity metric/measures primarily measure the complexity based on a procedural paradigm that would follow traditional software development lifecycles which have a defined flows, e.g.. Waterfall lifecycle (requirements, design, coding, test and integration and evolution). 
Today more systems are built as object orientated (OO) and it has been identified that there are few metrics available that have been validated. Due to the unique aspects of OO systems there is no hard evidence of the appropriateness of traditional metrics used by HSS to deal with this. 
In conclusion although the use of HSS is widely and commonly used to gain a maintainability assessment for maintenance of a system, this could be enhanced with other metrics and measures. This would ensure that the diverse nature of software/systems were adequately measured to allow the managers and developers to make better and more well informed decisions of the system whether to be able to evolve and maintain them or to stop supporting and close them down. 

References: 
Chapter 2: (Author Unknown), (retrieved: 30 May 2011) from www.itech.fgcu.edu/faculty/rbandi/chap2.doc 
McCabes Cyclomatic Complexity definition: 
http://en.wikipedia.org/wiki/Cyclomatic_complexity 
COMPSCI 702: Software Measurement: McCabe’s Cyclomatic Complexity Number 
Tempero, E., (retrieved: 30 May 2011) www.cs.auckland.ac.nz:_ewan 

Using Group and Subsystem Level Analysis to Validate Software Metrics on Commercial software systems. Kafura, D. (Dr), & Canning, J. (Dr). (retrieved: 30 May 2011) 
http://eprints.cs.vt.edu/archive/00000098/01/TR-88-13.pdf 
12 Steps to Useful Software Metrics, Westfall, L., (retrieved: 31 May 2011) 
http://www.westfallteam.com/Papers/12_steps_paper.pdf 

Chapter 13 – Managing Uncertainty and Risk 
3. How realistic is the desire to achieve fifty percent risk reduction? (explain your answer) (2 marks) 
Although highly desirable it would depend on whether the software was currently deployed or in development and at what level of maturity it was. In some instance a 50% decrease in risk may be by moving a unit by 1 point depending on how the risk matrix was created and the weighting of risk to certain activities. This can be identified by using the following calculation: Risk Exposure = Prob(Loss) x Size(Loss). Once this has been completed depending on where the risk exposure lies, would provide the possible areas that could be addressed to achieve the desirable risk reduction. All software would need to be regularly assessed to ensure that any new viruses and vulnerabilities did not provide any new exposure to current systems. Newly developed systems would greatly reduce their risk by the development lifecycle. These types of systems would require significant up front consultation to gather requirements for stakeholders and developers. This would lead to the initial design of the software products which could then be ratified as proof of concepts to identify if they could be created and meet the requirements. This would be followed by significant testing and consultation if requirements are signed off this would complete the design phase. The product could then be developed and tested in an equivalent environment topology to production. This is to identify and minimise the potential risks on deployment to production. 

Reference: 
Marshall, A. (Personal Communication) 31 May 2011 
Software Risk Management, Boehm, B, & DeMarco, T. Retrieved 31 May 2011 
http://web.student.tuwien.ac.at/~e0225647/Risiko/software%20risk%20management%20demarco.pdf 

4. Advise this company on how they should proceed and what they could do in order to attain such a goal. 
Once the above metrics had been calculated the following four areas could be reviewed to achieve its goal. 

1. One of the highest perceived risks by companies is staff turnover. This could be a significant issue on a long term development. To reduce this risk you would put in place a risk mitigation plan of ensuring that the system was thoroughly documented as well as the tacit knowledge of the employees but also by employing backup staff members to ensure there is sufficient cover should one of the members leave or fall sick. The probable loss can also be reduced by monitoring, assessing and addressing annual turnover rates. Critical staff members could also be incentivized to remain should there be any risk on them leaving, team building exercises are good for motivation, at lease resort should it be invoking draconian employment contract clauses e.g.. 3 month notice period. Another aspect of personnel risk is utilising contract resource to back fill or bridge gaps in the personnel. Depending on the how the employees are inducted and on boarded into the project could have a significant impact on the quality of either the production as each developer tends to bring their own style and at time they do not have the same incentive as employees to deliver at the same standards. The ability to forecast the use of personnel at times is difficult particularly if they are focused on more than one project at a time or there becomes a risk between completing/providing maintenance versus client project delivery. 

2. Size (loss) can be significantly reduced by ensuring quality monitoring and metrics are in place. Inspections of the software development for defects through peer review, but also allow familiarity of the components. Applying a principle and process to how the development will be monitored and tracked will enhance this. Size (loss) can also be attributed difficulties in the project planning scheduling. This can include the timetable for release, actual vs budgeted costs. These may have significant risk associated with e a safety critical system as the organisation may run out of funding to fix a defects that may be deemed as life threatening or the patch release/upgrade of a current system may not be ready in time to mitigate the risk of a vulnerability in a production environment. 

3. Requirement and Configuration management and consistent file templates and document repositories will allow new developers to up skill and familiarise quicker as they will have all the information in a single location with version history. The reduction in down time due to turn over will minimise the risk to development or maintenance of existing software products. The ability of the skilled project manager capability to manage the requirement changes of the development. Continuous and uncontrolled change in either specifications or requirements will create a knock on effect to budgets and time schedules. This is a critical task that needs to monitored and proactively controlled to ensure that it is maintained and all parties are informed. 

4. Subcontracting – the use of third parties in developing software needs to be closely monitored particularly if they have a key functionality in the software development. Should they go out of business or bought by a competitor this could prove high risk to any system. Good contract and vendor management could reduce this risk. 

References: 
Software Risk Management, Boehm, B, & DeMarco, T. Retrieved 31 May 2011 
http://web.student.tuwien.ac.at/~e0225647/Risiko/software%20risk%20management%20demarco.pdf 
Components of Software Development Risk: How to Address Them? A Project Manager Survey, Ropponen, J. & Lytinen, K. Retrieved 31 May 2011. 
http://www.de9.ime.eb.br/~tssouza/eng_soft/Artigos/Artigo.pdf

