Managing Business Projects

PROJECT REQUIREMENTS

STAKEHOLDERS

Word Count '' 659

Introduction

Stakeholders are an integral part of a project. They are the end-users or clients, the people from whom requirements will be drawn, the people who will influence the design and, ultimately, the people would reap the benefits of the completed project.

As stated by Alexandrou [2007], ‘Stakeholders should be involved in all phases of a project. The reasons are as follows:
• Experience shows that their involvement significantly increases the chances of success by building in a self-correcting feedback loop.

• Involving stakeholders in a project also builds confidence in your product and will greatly ease its acceptance in your target audience.’

Within project management, there are three types of stakeholders. These are primary, secondary and tertiary.

Primary Stakeholders - These are individuals or groups whose interest in the project must be recognized in order for the project to be successful. They are either positively or negatively affected during the project or by its outcomes or products. Some examples of primary stakeholders within an Information Technology project are the employees, clients, management, company owners and shareholders. [Pinter, Holland, Lines 2000]

Secondary Stakeholders- These are stakeholders who do not necessarily have an integral role within a project, and therefore do not necessarily have a great effect on the project’s success. They may have a minor stake in the project’s outcome. They may just need to be appreciated and informed. Some examples of secondary stakeholders within an Information Technology project are suppliers or vendors. [Pinter, Holland, Lines 2000]

Tertiary Stakeholders- These are stakeholders who are not necessarily involved in or affected, but can influence opinions either for or against the project. Some examples of tertiary stakeholders within an Information Technology project in some cases are statutory bodies or governmental agencies. [Pinter, Holland, Lines 2000]

SCOPE DOCUMENT

Introduction

The scope document is a document which refines and defines the requirements aspect of the three constraints of time, cost, and requirements. In this general sense, it provides an overview of what the project is supposed to accomplish and clarifies how those accomplishments will be achieved. It may also provide the team members, customer, and project manager with insight on what is specifically not in the scope. The level of detail within a scope document would vary based on the project and also the organization.

Application of a Scope Document

As stated by Stefanova [2007], ‘The scope document is used as a tool to minimize disputes over what is and is not included in the project. It is not only used to clarify the project’s objectives for project organisation and the customer, but also for team members and between management and the project manager. Since visions about how a project may be carried out frequently differ, the scope document serves as the unifying tool for those visions…’

Contents of a Scope Document

The scope document is an expanded version of the scope statement, with far more extensive information. It normally incorporates much of the same information as the scope statement, with expanded detail on stakeholders, problems or needs, requirements, deliverables, features, long-term use/application, administrative requirements, cost and payment plan. [Stefanova 2007] The following is a brief explanation of the contents within a Scope Document:
Problems '' The problems or needs of the project are discussed. The issues are restated as described by the client, which would help to confirm your interpretation. [Sisco 2002]

Deliverables '' Describes all the deliverables that will establish successful completion of the project. [Sisco 2002]

Plan '' Defines the work plan in detail to a point where the client would be able to understand what you plan to do in the project, how the process will work and also the length of the project. The plan also has to include key milestones. [Sisco 2002]

Requirements/Resource Needs '' Calculate the resources which will be needed from the client so that they can plan for the effect your work will have on the organisation. [Sisco 2002]

Cost '' Describes your cost estimates so that misunderstandings will be prevented later on. Many different cost models can be used such as billing time and material, giving a fixed project cost and working on a monthly retainer fee. If clients clearly understand the justification for your cost, they would be a lot more willing to spend without any issues. [Sisco 2002]

Payment Plan '' Describes when and how you should be paid for the project. This information should be stated up front to avoid conflict later on. [Sisco 2002]

VISUAL FORMS OF COMMUNICATION

Word Count - 1,148

Introduction

Visual communication is communication through visual aid. It is the conveyance of ideas and information in forms that can be read or looked upon. It is associated with two dimensional images, and includes art, signs, typography, drawing, graphic design, illustration, colour and electronic resources. It solely relies on vision. It explores the idea that a visual message with text has a greater power to inform, educate or persuade a person. [www.wikipedia.com 2008]

Visual Communication has proven to be one of the most effective forms of communication since it utilises most of the human senses. There exists a variety of ways to present information visually. In this section, the use of visual communication in relation to project management will be explored.

Software Life Cycle Models

Introduction

The basic concept behind the design of software development lifecycle models is to provide you basic building blocks of a model and gives examples of their use. Life cycle models describe the interrelationships between software development phases. Because the life cycle steps are described in very general terms, the models are adaptable and their implementation details will vary among different organizations. The spiral model is the most general. Most life cycle models can in fact be derived as special instances of the spiral model. A software life cycle model depicts the significant phases or activities of a software project from conception until the product is retired. It specifies the relationships between project phases, including transition criteria, feedback mechanisms, milestones, baselines, reviews, and deliverables. Typically, a life cycle model addresses the following phases of a software project: requirements phase, design phase, implementation, integration, testing, operations and maintenance. The common life cycle models are:
• Spiral model
• Waterfall model
• Evolutionary prototyping model

Spiral Model

As stated by www.levela.com [2005], ‘The spiral model is the most generic of the models. Most life cycle models can be derived as special cases of the spiral model. The spiral uses a risk management approach to software development. Some advantages of the spiral model are:
• Defers elaboration of low risk software elements
• Incorporates prototyping as a risk reduction strategy
• Gives an early focus to reusable software
• Accommodates life-cycle evolution, growth, and requirement changes
• Incorporates software quality objectives into the product
• Focus on early error detection and design flaws
• Sets completion criteria for each project activity to answer the question: "How much is enough?"
• Uses identical approaches for development and maintenance
• Can be used for hardware-software system development’

Waterfall Model

The waterfall model derives its name due to the cascading effect from one phase to the other. In this model each phase has a well defined starting and ending point, with specific deliveries to the next phase. This model is the least flexible and most obsolete of the life cycle models. Well suited for projects that have low risk in the areas of user interface and performance requirements, but high risk in budget and schedule predictability and control. [www.levela.com 2005]

Below is a figure showing this model which was referenced from the Business Systems Analysis NCC Education 2002.

[pic]

Evolutionary Prototyping Model

Prototyping uses much iteration of requirements gathering and analysis, design and prototype development. After any iteration, the result is analyzed by the customer. Their response creates the next level of requirements and defines the next iteration. This model is used in projects that have low risk in such areas as losing budget, schedule predictability and control, large-system integration problems, or coping with information sclerosis, but high risk in user interface design. [www.levela.com 2005]

Below is a representation of an Evolutionary Prototyping Model.

[pic]

http://mavericsys.blogspot.com/2007/11/prototype-model.html

Activity Networks Diagrams

As stated by Daintith [2004], ‘An Activity Network Diagram (also known as Critical Path Analysis) is a graphical method of showing dependencies between tasks or activities in a project. It is a classic project planning tool which allows you to calculate what tasks start when, and what float there is in the project. The network consists of nodes which are connected by arcs. Nodes denote events and represent the culmination of one or more activities. Arcs represent activities and are labelled with the name of the activity and there is an estimated time to complete the activity. ‘

There are a number of attributes that can be associated with a task, such as the person doing it and the resources they need to do the job. One of the most important of these is the time required to complete each task as, once this is known, the actual calendar dates for tasks can be calculated. This is done using the Critical Path Method (or CPM). Once the start date for the overall project is known, this will give the earliest and latest start dates for each task. The amount of time that a task can be delayed without affecting the completion time of the overall project is known as the slack time or float. The total of all slack times for all tasks in the project gives the total time wasted, and may be reduced if the tasks can be rearranged. The critical path in an Activity Network Diagram is the sequence of tasks which have zero slack time. Therefore if any task in the critical path finishes late it affects the end date of the entire project causing the whole project to be completed late. [www.syque.com 2007]

[pic]
syque.com/.../toolbook/Activity/Image61.gif

Mind Maps

Mind Maps are extremely useful in project management. They were made popular by Tony Buzan. It replaces the conventional note taking with a two-dimensional structure. They are also more compact than usual notes and normally only takes up one side of a paper. A good mind map should give a visual representation of the ‘shape’ of the subject, the relative importance of specific points and how facts are related to one another.
Depending upon the tools used to produce the maps, the user can show connections between and among entities, add attachments, and connect hyperlinks to other resources. Mind maps can be very important in revealing hidden relationships between requirements or requiring organizations, thereby allowing the development project manager to prioritize on the basis of clustered functions. [Clevenger 2008]

Mind maps can show where functions can be logically grouped into capability packages, where data can be consolidated, and where user groups can be merged in terms of their system needs. While not a substitute for formal requirements processes, mind maps can provide a visual representation to make a project come alive to developers. They provide a structure which encourages creative problem solving, and information is displayed in such a way that your mind finds easy to remember and quick to review. [Buzan 1994]

In a nutshell, mind maps are useful in the following ways:
• Thinking through complex problems.

• Presenting information in a format that shows the entire structure of a subject.

• Merging information from different research sources.

• Summarising information.

• Making information easy to review and remember at a glance.

• Engages much more of the brain.

TEAM SELECTION AND MANAGEMENT

Word Count -1633

Introduction

There are many team working theories and strategies which can assist a project manager in the selection and development of an effective project team. Some of the more popular theories were developed by Tuckman, Belbin and Myers-Briggs and have proven to be a success. In this section, these three theories will be explored.

Tuckman Theory

Introduction

This model was first developed by Bruce Tuckman in 1965. It is one of the best known team development theories and has formed the basis of many further ideas since its conception. It focuses on the way in which a team tackles a task from the initial formation of the team through to the completion of the project. Tuckman’s theory consisted of four phases initially which were Forming, Norming, Storming and Performing. He later added a fifth phase; Adjourning and Transforming to cover the finishing of a task. This theory is particularly relevant to team building challenges as the phases are relevant to the completion of any task undertaken by a team. [www.teambuilding.co.uk 2008]

Forming

The team is assembled and the task is allocated. Team members tend to behave independently and although goodwill may exist they do not know each other well enough to unconditionally trust one another. Time is spent planning, collecting information and bonding. [www.teambuilding.co.uk 2008]

Storming

The team starts to address the task suggesting ideas. Different ideas may compete for ascendancy and if badly managed this phase can be very destructive for the team. Relationships between team members will be made or broken in this phase. It’s essential that a team has strong leadership in this phase. [www.teambuilding.co.uk 2008]

Norming

As the team moves out of the Storming phase they will enter the Norming phase. This tends to be a move towards harmonious working practices with teams agreeing on the rules and values by which they operate. In the ideal situation teams begin to trust themselves during this phase as they accept the vital contribution of each member to the team. Team leaders can take a step back from the team at this stage as individual members take greater responsibility. [www.teambuilding.co.uk 2008]

Performing

The Performing phase is essentially an era of high performance. Performing teams are identified by high levels if independence, motivation, knowledge and competence. Decision making is collaborative and dispute is expected and encouraged as there will be a high level of respect in the communication between team members. [www.teambuilding.co.uk 2008]

Adjourning & Transforming

This is the final phase added by Tuckman to cover the end of the project and the break up of the team. More enlightened managers have called Progressive Resources in to organise a celebratory event at the end of a project and members of such a team will undoubtedly leave the project with fond memories of their experience. It should be noted that a team can return to any phase within the model if they experience a change. [www.teambuilding.co.uk 2008]

Belbin Theory

Introduction

Dr. Meredith Belbin is well known for his team roles concept. The team roles identified by Belbin are based on certain patterns of behaviour that people exhibit within teams. These patterns of behaviour can potentially have an impact on the performance of the team, therefore having a spill over effect on a project. The basic premise of the Belbin team roles theory is quite simple. When individuals become aware of their own strengths and abilities, and understand the role that he or she is capable of playing within a team, it helps them to deal better with the demands of the team environment.

As stated by Belbin’s team roles are based on a study that examined personality traits, intellectual styles and behaviours within teams. The Belbin model presently sports 9 roles, the new one being the ‘Specialist’. [www.teambuilingportal.com 2007]

The 9 team roles are usually further classified into Action oriented, People oriented and Cerebral roles as follows:

Action Oriented Role:
Implementer '' The implementer’s strength lies in translating the team’s decisions and ideas into manageable and practical tasks or actions.

Shaper '' The shaper’s strength lies in being goal directed. The shaper is a dynamic individual who boldly challenges others during discussions, can handle work pressures and has the courage to overcome obstacles.

Completer - The completer/finisher’s strength lies in meticulousness, attention to detail and the ability to meet deadlines. [www.mftrou.com 2007]

People Skills Oriented Role:

Co-ordinator - The co-ordinator’s strength lies in enabling and facilitating interaction and decision making.

Teamworker - The teamworker’s strength lies in being a good listener, being collaborative, co-operative, easy going and tactful.

Resource Investigator - The resource investigator’s strength lies in being an extrovert who can develop contacts, communicate well, explore new ideas and opportunities, and bring enthusiasm and drive to the team effort. [www.mftrou.com 2007]

Cerebral/Intellectual Role:

Planter - The planter’s strength lies in problem solving and out-of-the-box thinking.

Monitor/Evaluator - The monitor/evaluator’s strength lies in good judgment and good strategic thinking ability.

Specialist '' The specialist’s strength lies in being a dedicated and focused individual who likes to learn and constantly build his or her knowledge. The specialist likes to dig deep and is therefore a good resource who can contribute information and knowledge in a team situation. [www.mftrou.com 2007]

Myers-Briggs’ Theory

Introduction

As stated by Myers [2008], ‘The theory of psychological type was introduced in the 1920s by Carl G. Jung. The MBTI tool was developed in the 1940s by Isabel Briggs Myers. Its aim was to make the insights of “type theory” accessible to individuals and groups.’ The two related goals in the developments and application of the MBTI instrument are as follows:
• The identification of basic preferences of each of the four dichotomies specified or implied in Jung’s theory.

• The identification and description of the 16 distinctive personality types that result from the interactions among the preferences.
Favourite world: Do you prefer to focus on the outer world or on your own inner world? This is called Extraversion (E) or Introversion (I).
Information: Do you prefer to focus on the basic information you take in or do you prefer to interpret and add meaning? This is called Sensing (S) or Intuition (N).
Decisions: When making decisions, do you prefer to first look at logic and consistency or first look at the people and special circumstances? This is called Thinking (T) or Feeling (F).
Structure: In dealing with the outside world, do you prefer to get things decided or do you prefer to stay open to new information and options? This is called Judging (J) or Perceiving (P). [Myers 2008]

Personality Type

Upon deciding your preference in each category, you get your own personality type, which can be expressed as a four letter code. There are 16 personality types of the Myers-Briggs Type Indicator instrument. They are shown on a Type Table. Each abbreviation signifies a specific personality type.
ISTJ	ISFJ	INFJ	INTJ
ISTP	ISFP	INFP	INTP
ESTP	ESFP	ENFP	ENTP
ESTJ	ESFJ	ENFJ	ENTJ

http://www.myersbriggs.org/my-mbti-personality-type/mbti-basics/

Risk Management

Introduction

As stated by Witzel [2005], ‘A risk is a potential, unknown event that can negatively impact the successful outcome of a project. Risk management is the process of accessing and controlling risks. Risks are just simply a part of project life. However, you can identify what the most likely risks are and develop strategies to deal with them. This is Risk Management. It is intended to help you manage emerging issues without letting them become full blown crises.’

Identifying Risk

The first step in managing risk is to identify what risks threaten the project. A meeting to discuss project risks is an important step for any project. Brainstorming with the project team members and other key stakeholders about what could go wrong during the project is a good idea. There are some common risks that are found in just about every project:

• Changing objectives

• Unachievable schedule

• Poor communication

Prioritizing Risks

The project team must decide which risks are more threatening, which risks are less threatening, and which ones would be most disruptive to your project if they were to occur. Resources are limited to manage risks so it is important that they are prioritized to help focus efforts. More time should be spent on managing the more threatening risks, but still taking the minor risk into consideration. The threat level comprises the likelihood and impact of a risk. Likelihood is the chance that the risk will occur. Impact is the amount of damage that it would do were it to occur. In the diagram below, the threat level increases as the likelihood and impact increases. [Witzel 2005]

www.charityvillage.com/cv/research/rom18.html

Risk Scenarios and Contingency Plans

Two possible risks scenarios within a project with contingency plans are as follows:
• Loss of key personnel - The impact is high, while the likelihood is medium. Therefore the threat level would be high based on the risk matrix. A contingency plan for the loss of key personnel would be to ensure that there is good recruitment plan, ensure that all project team members are familiar with all aspects of the project and produce detailed documentation of the project so that the next person in line can easily grasp the project.

• Infighting between team-mates - The impact is high, while the likelihood could be high or low depending on the project type. If the likelihood is high, the threat level would be critical based on the risk matrix. If the likelihood is low, the threat level would be medium based on the risk matrix. A contingency plan for infighting between team-mates would be to ensure that there is good communication between team-mates in terms whether it is informal or formal meetings or the use of memos. By ensuring that communication is good, team-mates would be on the same page in terms of the project’s objectives.

VERIFICATION AND VALIDATION

Word Count - 1044

Introduction

As stated by www.wikipedia.com [2008] in a Verification and Validation article, ‘In software project management, software testing, and software engineering, Verification and Validation (V&V) is the process of checking that a software system meets specifications and that it fulfils its intended purpose. It is normally part of the software testing process of a project. V&V is intended to be a systematic and technical evaluation of software and associated products of the development and maintenance processes. Reviews and tests are done at the end of each phase of the development process to ensure software requirements are complete and testable and that design, code, documentation, and data satisfy those requirements.’ Below is a table which clearly shows the differences between verification and validation.
Validation	Verification
Am I building the right product	Am I building the product right
Determining if the system complies with the	
requirements and performs functions for which it is	The review of interim work steps and interim deliverables
intended and meets the organization’s goals and user	during a project to ensure they are acceptable. To determine
needs. It is traditional and is performed at the end	if the system is consistent, adheres to standards, uses
of the project.	reliable techniques and prudent practices, and performs the
	selected functions in the correct manner.
Am I accessing the right data (in terms of the data	Am I accessing the data right (in the right place; in the
required to satisfy the requirement)	right way).
High level activity	Low level activity
Performed after a work product is produced against	Performed during development on key artifacts, like
established criteria ensuring that the product	walkthroughs, reviews and inspections, mentor feedback,
integrates correctly into the environment	training, checklists and standards
Determination of correctness of the final software	Demonstration of consistency, completeness, and correctness
product by a development project with respect to the	of the software at each stage and between each stage of the
user needs and requirements	development life cycle.

http://geekswithblogs.net/srkprasad/archive/2004/11/30/16490.aspx
The two major Verification & Validation activities are reviews which include inspection and walkthroughs; and testing which include informal and formal testing.

Reviews

Reviews are conducted during and at the end of each phase of the life cycle to determine whether established requirements, design concepts, and specifications have been met. Reviews consist of the presentation of material to a review board or panel. Reviews are most effective when conducted by personnel who have not been directly involved in the development of the software. Reviews can be broken down into two segments which are informal and formal reviews. [http://satc.gsfc.nasa.gov 2007]

Below is a detailed description of each type of review:

Informal Reviews

Informal reviews are conducted on an as-needed basis. The developer chooses a review panel and provides and presents the material to be reviewed. The material may be as informal as a computer listing or hand-written documentation.
[http://saulcarliner.home.att.net/idbusiness/informalreviews.htm 2002]

Formal Reviews

Formal reviews are conducted at the end of each life cycle phase. The acquirer of the software appoints the formal review panel or board, who may make or affect a go/no-go decision to proceed to the next step of the life cycle. Formal reviews include the Software Requirements Review, the Software Preliminary Design Review, the Software Critical Design Review, and the Software Test Readiness Review.
[http://satc.gsfc.nasa.gov 2007]

Inspection

An inspection is a detailed examination of the product on a step-by-step basis. Inspection involves a team of about 3-6 people, led by a leader, which formally reviews the documents and work product during various phases of the product development life cycle. The work product and related documents are presented in front of the inspection team, the members of which carry different interpretations of the presentation. The bugs that are detected during the inspection are communicated to the next level in order to take
care of them. [Parekh 2005]

Walkthroughs

Walkthrough can be considered same as inspection without formal preparation (of any presentation or documentations). During the walkthrough meeting, the presenter/author introduces the material to all the participants in order to make them familiar with it. Even when the walkthroughs can help in finding potential bugs, they are used for knowledge sharing or communication purpose. [Parekh 2005]

Testing

Testing is the operation of the software with real or simulated inputs to demonstrate that a product satisfies its requirements and, if it does not, to identify the specific differences between expected and actual results. There are varied levels of software tests, ranging from unit or element testing through integration testing and performance testing, up to software system and acceptance tests. [www.satc.gsfc.nasa.gov 2007]

Informal Testing

Informal tests are done by the developer to measure the development progress. Informal does not mean that the tests are done in a casual manner, just that the acquirer of the software is not formally involved, but witnessing of the testing is not required, and that the prime purpose of the tests is to find errors. Unit, component, and subsystem integration tests are usually informal tests. Informal testing may be requirements-driven or design-driven. Requirements-driven or black box testing is done by selecting the input data and other parameters based on the software requirements and observing the outputs and reactions of the software. [Parekh 2005]

Black box testing can be done at any level of integration. In addition to testing for satisfaction of requirements, some of the objectives of requirements-driven testing are to ascertain:

• Computational correctness

• Proper handling of boundary conditions, including extreme inputs and conditions that cause extreme outputs.

• State transitioning as expected.

• Proper behaviour under stress or high load.

• Adequate error detection, handling, and recovery.

Design-driven or white box testing is the process where the tester examines the internal workings of code. Design-driven testing is done by selecting the input data and other parameters based on the internal logic paths that are to be checked. [www.satc.gsfc.nasa.gov 2007]

The goals of design-driven testing include ascertaining correctness of:

• All paths through the code. For most software products, this can be feasibly done only at the unit test level.

• Bit-by-bit functioning of interfaces.

• Size and timing of critical elements of code.

Formal Testing

Formal testing demonstrates that the software is ready for its intended use. A formal test should include an acquirer-approved test plan and procedures, quality assurance witnesses, a record of all discrepancies, and a test report. Formal testing is always requirements-driven, and its purpose is to demonstrate that the software meets its requirements. [Grenda 2007]

