MA2020 COURSEWORK 2

(You will have a test based on these questions on Monday, 20 April 2009 at 1pm)
1.
(a)
The first derivative of y(x) at x=xi can be approximated by:
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This suggests the following difference method for solving 
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2
Find the local truncation error for this method.

(8 marks)



Is this method zero stable?

(4 marks)


(b)
Find the approximate solution of
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at x=1.1 using the Taylor Series method.  Your expansion should include the first four non-zero terms.  Work to six decimal places accuracy.  

(8 marks)



Find the analytical solution for this problem at x=1.1 and calculate the error in the above numerical approximation.

(5 marks)
2.
A projectile of mass m=0.11 kg shot vertically upward with initial velocity

v(0)=8 meter/sec is slowed due to the force of gravity 
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and due to air resistance 
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 , where g=9.8 meter/sec2 and k=0.002 kg/meter.  The differential equation for the velocity v is given by:
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Use modified Euler’s method to calculate v(0.1) and v(0.2). Work to six decimal places accuracy.

(10 marks)

Now calculate v(0.2) using the 4th order Runge-Kutta method.  Take the step-length h=0.2 and work to six decimal places accuracy.

(10 marks)


Find the analytical solution for this problem at t=0.2 and calculate the errors in the above numerical approximations.

(5 marks)

3.
Consider the following method for solving 
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where 
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(i)
Show that the method is of order 3 if 
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 and of order 2 if 
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(16 marks)

(ii)
Find the range of 
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 for which the method is zero stable.

(9 marks)

4.
Consider the following initial value problem:
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(i)
Find the analytical solution for the above problem and evaluate it for x=0.4, x=0.8, x=1.2, x=1.6 and x=2.0.

[5 marks]

(ii)
Use the mid-point rule 
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 with h=0.4 to calculate the solution numerically on the interval [0,2].  You may assume that y(0.4)=0.4517 (the value calculated by a 4th order Runge-Kutta method).  Give your results to 4 decimal places accuracy and calculate the error at each step.  What do you observe and what conclusions can you draw about the method?

[13marks]

(iii)
Now the predictor-corrector pair
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2
is used to solve the problem numerically with h=0.4 and with the same starting value. The correction is performed only once at each step.  The following table of results is obtained:
	xi
	ŷi (predicted)
	f (xi, ŷi) (predicted)
	yi (corrected)
	f (xi, yi) (corrected)

	0
	1
	-2
	
	

	0.4
	0.4517
	-0.9034
	
	

	0.8
	0.3097
	-0.6193
	0.1742
	-0.3485

	1.2
	0.1458
	-0.2917
	0.0628
	-0.1256



Calculate the solution at x = 1.6 and x = 2.0.  As before, give your


results to 4 decimal places accuracy and calculate the error at each step.  Do you observe the same phenomenon as with the mid-point rule?

[7 marks]
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