Scalable Distributed Depth-First Search with Greedy Work Stealing 
Joxan Jaffar, Andrew E. Santosa, Roland H.C. Yap, and Kenny Q. Zhu 
School of Computing National University of Singapore Republic of Singapore {joxan,andrews,ryap,kzhu}@comp.nus.edu.sg Abstract. We present a framework for the parallelization of depth-ﬁrst combinatorial search algorithms on a network of computers. Our architecture is based on work stealing and uses a small number of primitives which allow the processors (which we call workers) to obtain new work and to communicate to other workers. These primitives are a minimal imposition and integrate easily with constraint programming systems. The main contribution is an adaptive architecture which allows workers to incrementally join and leave and has good scaling properties as the number of workers increases. We show analytically that near lineartime speedup is possible for a large number of workers and the condition under which linear speedup is expected. Our empirical results illustrate that near-linear speedup for backtrack search is achieved for up to 61 workers, and suggest that near-linear speedup is possible with even more workers. The experiments also demonstrate where departures from linearity can occur for small problems and where the parallelism can itself affect the search as in branch and bound. 

1 Introduction 
Search problems, such as those from constraint and combinatorial problems, involve large amounts of computation and are natural candidates for parallelization. Most of the work in parallel search [5] assumes a parallel computer with a ﬁxed number of CPUs. Karp and Zhang [8] have shown that linear speedup for backtrack enumeration search is theoretically possible using an idealized PRAM model with a ﬁxed number of processors. The Cilk programming model [3] shows that for multi-threaded computation on shared memory parallel computers, greedy randomized work stealing has theoretical near linear speedup. Similar randomized stealing strategies are also implemented in many other systems. An important drawback for much of the theoretical work is that the idealized assumptions do not lead to scalable systems. Today, the most cost effective and largest available computing resources are usually with networked computing, e.g. a Beowulf cluster consists of a collection of workstation/PC class machines connected using a fast network. Distributed computation running across the Internet, e.g. SETI@home or distributed.net, can potentially achieve peak parallelism of tens of thousands of machines. We call this inexpensive approach to parallel computing “commodity parallelism”. Among the top 500 supercomputer sites in the world, many of the new entrants are simply large PC clusters, most notably the at third place is the Virginia Tech cluster consisting of 2,200 processors which are simply Apple PCs networked together. 

Early work on distributed search includes the distributed backtracking (DIB) in [4], which presented a message-passing based distributed backtracking implementation. Stack splitting, receiver-initiated load balancing and a redundancy-based fault tolerance were adopted in the DIB. The method was distributed but the experimental results show saturation in execution time with just 16 CPU’s. Along such lines, a number of other systems have been built, including Atlas [1], Satin [12], Javelin [9], etc. These systems are high-level distributed programming environment suitable for wide-area networks or grids. Many also inherit the spawn/sync divide-and-conquer programming style from Cilk. There is also a wealth of empirical work using parallel logic programming and constraint programming systems. OR-parallel logic programming gives a language approach for parallel search. In the distributed setting, PALS [13] is an OR-parallel logic programming system for Beowulf clusters. A comprehensive survey of parallel logic programming including OR-parallelism can be found in [6]. [11] gives empirical results for a distributed search engine in Oz but only on a 3 node cluster. An signiﬁcant difference with our paper is that in much of the parallel logic programming and constraint programming work, the important issue of scalability as the number of compute nodes increases and also any kind of speedup analysis is not addressed. Our goal is to exploit the cheap compute resources of commodity parallel hardware for depth ﬁrst based constraint search. This necessitates a distributed collection of computers which we call workers connected by a network. The number of available workers is meant to be dynamic (growing/shrinking over time), e.g. sharing a cluster among a few parallel compute jobs. We want a solution which can scale to potentially (very) large number of workers and thus want to avoid maintaining global information about all workers. This is in contrast with the earlier randomized load balancing schemes for parallel programming which use a centralized repository to store and manage all workers. Furthermore, because of the distributed dynamic worker setting, we want solutions which only need limited connectivity between the workers. Our framework uses constraints to represent subproblems with the use of constraint search trees to present the problem space. This allows general speciﬁcation of search and gives a ﬂexible way of tailoring search algorithms. Although constraints are used as an abstraction, in contrast to language based approaches [6, ?], our architecture is language neutral with a number of generic search primitives to be embedded within a user program for the search engine. Our solution is compatible with many constraint programming systems and can be easily embedded in one. Although it would seem that in a search problem that workers can work independently and thus easily obtain linear speedup, this is not valid in a non-centralized distributed setting. For example, it may be the case that with a sufﬁciently large/inﬁnite number of workers that the overheads will lead to slowdown relative to a single worker (T1 < T∞ )! Here, we are able to show analytically the conditions where our distributed architecture is able to achieve near-linear speedup. The execution time, Tp , for p workers is Tp = O (T1 /p + uhp log p) where h is the height of the search tree and u is the communication cost. This assumes that both a search with p and 1 worker both explore the same nodes in the search tree. The result is reasonable since communication costs 

to all workers cannot be less than O (ulogp) and one has to deal with contention from p workers. Our preliminary experimental results show that the framework exhibits good linear speedup to 61 nodes. We also show that scalability is reduced for optimization problems with branch and bound search since load balancing is more difﬁcult and overheads increase. In summary, our search architecture gives a scalable, language neutral, constraint-based search architecture. Moreover it can achieve good theoretical and practical speedup on very cost effective commodity parallelism machines such as networked clusters. 

2 Constraints and Search 
A (combinatorial) search problem P can be expressed in a general form as a 4-tuple: (V, D, C, O) where V is a set of variables over the domain D , C is a set of constraints which are relations over those variables, and O is an optional objective function deﬁned on V (in case P is an optimization problem). A solution of P is a valuation for V which satisfy the constraints C . A special case is an optimization problem where the solution has the additional property that the value of the objective function is minimal (or maximal). The search problem is to ﬁnd either some or all solutions of P. Consider a constraint store C, the solution space can be split in two by posting a constraint c1 which creates two new subproblems, c ∧ c1 and c ∧ ¬c1 . Each subproblem is independently solvable and more speciﬁc than the original because of the added constraints. The subproblems can be further split recursively until the problem is solved. A problem is solved when the desired valuation is found or we determine that C is unsatisﬁable. In general the splitting could be k-way, without loss of generality, we will only consider binary splitting here. The splitting process can be simply represented as a binary constraint search tree where the nodes represent the constraint store and the edges identify the splitting constraint. In ﬁgure 1, node C is the original problem and node P12 is the subproblem c ∧ c1 ∧ ¬c2 after splitting C with c1 and then ¬c2 . 
C 
C 

C1 
C1 
P2 

C1 

C1 
P1 

C2 

C2 
Assigned Nodes 

C2 
P11 

C2 
P12 

C3 

C3 

Frontier 

Free Nodes Closed Nodes 

Fig. 1. A constraint search tree 

Fig. 2. The frontier of a constraint search tree 

One can see that the constraint search tree is a generalized representation of the search space. In general, the method to choose the speciﬁc constraints c 1 , c2 , · · · , is left unspeciﬁed. In our distributed search, just as in sequential depth-ﬁrst based search, the splitting choices can be generated dynamically which means the search tree is determined at runtime. Note that the shape of the search tree will be different with different 

choices. The typical search heuristics used for sequential constraint programs can be used. During distributed search, workers can even use different solvers, choices and heuristics. The search progress is characterized by the current search tree, which is the set of nodes that have been explored so far. The leaf nodes of the current search tree, collectively known as the frontier, consists of closed nodes, assigned nodes, and free nodes. Closed nodes correspond to subproblems that have been solved. Assigned nodes correspond to subproblems that have been assigned to some computing agent and is currently being actively worked on, hence they are the “live” nodes. Free nodes correspond to subproblems that are not assigned to any workers. The frontier covers the whole search problem, which means when all the frontier nodes are solved, the whole problem is also solved. The frontier of the constraint search tree in Fig.1 is shown in Fig.2. The frontier can grow, when an assigned node is split to become a new assigned node and a free node. 2.1 Search engines Our framework supports depth ﬁrst based search engines with the following program structure: 1. steal a subproblem c – a subproblem can be a subtree of the assigned node of a given worker, which would be a local steal, or it could have ﬁnished searching its assigned node and needs to steal c from another worker, which would be a global steal. 2. if c is sufﬁciently small, then directly solve c sequentially; 3. otherwise, make a splitting constraint c1 , spawn the new subproblem c ∧ c1 (which then becomes a candidate for stealing by this or another worker) and continue working on the other subproblem c ∧ ¬c1 . 4. goto 1. There is a very close correspondence to a sequential depth ﬁrst search. Consider a backtracking depth ﬁrst based search engine. Splitting the problem is simply pushing the alternative choice on the stack – this corresponds to a spawn. When a subproblem is ﬁnished, backtracking happens, which pops the stack – this corresponds to a local steal. So if there is only one worker, the distributed search can be reduced to a backtracking one. However, non-backtracking implementations such as constraint store copying together with recomputation are also possible [10]. The main difference with sequential search is that distributed search with multiple workers will also have global steals which will reduce the number of subproblems to be stolen locally. There are two more important operations: publish and done. The publish operation is used in optimization to distribute new bounds to all the workers. The done operation informs the system that a solution is found and optionally to terminate the caller. It should be obvious that this scheme integrates very easily with most constraint programming systems Example: This example gives the structure of a simple depth search engine for ﬁrst solution using 

the framework for a 0/1 search problem. The splitting strategy is just to search ﬁrst on 0 and then 1. 1: steal problem P; if (steal is unsuccessful) exit; // no more work do { if (P is consistent) { x := select unbound variable from P; spawn using splitting constraint (x=1); post constraint (x=0) to P; // apply constraint solver } else goto 1; // backtracking can be used } while (P not solved); // not all variables ground publish(P); done(P); exit; 

3 Architecture 
The central element of the distributed search is an architecture for managing the workers. It consists of a distinguished master and a varying number of workers and a workstealing algorithm. We assume that the masters and workers are connected by a network but do not share any memory. The master does not employ any centralized data structures to maintain a list of all the workers. So the framework is completely distributed. The master serves as the entry point for a worker to join a computation. It has a known address so that any potential worker can contact it. We assume that apart from an initialization phase, the master is not a bottleneck because multiple global steals do not happen every often. The master maintains a queue to serialize the requests. We assume that workers and the master share a common constraint format for receiving the subproblems. However, it is not necessary for workers to be running the same search program as long as it is a correct depth ﬁrst based one using the framework for the common problem. The master maintains the search problem deﬁnition – the root node c of the search tree. As workers join the computation, they are connected through the master to form a worker tree. The master also records the solutions found, propagates bounds for optimization problems and terminates the entire computation. A worker which joins a search problem performs three operations: explore the search tree; sharing work with other workers; and updating the system with solutions and new bounds for the objective function when they are found. A worker is divided into two processes or threads: a wrapper and a search engine. Fig. 3 depicts this for the constraint tree in Fig. 2. The wrapper is the component of the framework responsible for dealing with work stealing and communication with the master and other workers while the search engine is the user search program which uses the framework’s primitives. Interaction between the wrapper and search engine is meant to be small but does constitute overhead. Concurrency control between the wrapper and the search engine can be done with simple locking. 1 
1 

More advanced type of “lock-free” synchronization can also be used to prioritize the search engine’s access to the freenode stack, but this is beyond the scope of this paper. 

To Other Workers 

Wrapper Global Steal C C C1 C1 C2 Local steal 

Publish Bound 
3 

Master 

2 

Free−node Stack 

1 

1 

1 

Spawn 

Broadcasting Worker 

Search Engine 
(User search program) 

Update Bound 

Fig. 4. A weighted worker tree and publish 

Fig. 3. Structure of the worker 

Each worker manages its remaining subproblems with a freenode stack. New subproblems are generated using some depth ﬁrst computation on this worker. A spawn operation pushes a freenode (representing a new subproblem which has not been searched) on the stack. When a worker steals, and its own stack is nonempty, it removes the most recently generated subproblem from the stack. As this operation is local to the worker and thus encounters little overhead compared to global communication costs. We discuss later what happens if a steal returns a subproblem from another worker. Since the master records the ﬁnal solution to the original problem, the workers must report their (possibly non-ﬁnal) solutions to the master from time to time. Depending on whether it is a single-solution, all-solution or best-solution mode, the master stores the solutions accordingly. To prevent the master or any worker from being a communication bottleneck, and to allow for potentially large number of workers, we arrange the master and workers in a balanced worker tree as shown in Fig. 4, where the weight on an edge records the number of nodes in the subtree from that edge. In this paper, we assume without loss of generality a binary worker tree. Initially, the worker tree has only one master node as its root, and the two edges going out of the root have zero weight. A worker is inserted into the tree by following an edge with smaller (or equal) weight unless it arrives at a node with a zero weight edge. The new worker is then inserted at that edge. During the insertion process, the weights of the affected edges are incremented by one accordingly. Traversal down the tree involves message passing between a parent node and one of its children. The resulting worker tree is a perfectly weight-balanced tree, where the weight of left subtree and the weight of right subtree differ by at most one. The height of such a worker tree is bounded by log(p) . Notice that a balanced worker tree is constructed purely by using message passing and local worker operations. When the number of workers becomes ﬁxed, this tree becomes static, and no further insertion cost will be incurred. 

To report a new bound, a worker uses the publish primitive. The master will receive the solution in O (log(p)) time after the message propagates up in the worker tree. Some sequential search algorithms such as branch-and-bound expedite the search process by introducing bounds and constantly updating them so that parts of the search tree can be pruned off. We have thus made publish a broadcast command. This is implemented by a ﬂooding mechanism (Fig. 4). A worker who receives a bound from one of its channels will record the bound and forward it to all other channels only if the bound is better than its local bound. This way, a publish of a bound takes O (log(p)) time to reach every worker in the system. The updated bound is available to the search engine when a spawn or a local steal occurs. 3.1 Global work stealing algorithm We now introduce a global work stealing algorithm which works using the balanced worker tree. The global steal strategy is to use a heuristic to steal the largest amount of work – this is intended to ensure good work balancing between the workers. The master ﬁrst forwards the request down the worker tree to all workers. Each worker estimates the amount of work which would be available if its oldest subproblem is stolen. A simple estimate is simply the height of the search tree represented by that subproblem. For example, this could be estimated as the number of non-ground variables. A more sophisticated strategy would factor in the cardinality of the variable domains. The workers at the leaves of the worker tree reports their address and work estimate back to their parents. An internal worker node chooses between the work estimates of itself and its children and propagates this up. Eventually the master gets the best estimate with the address of the worker. It then instructs the “thief” to steal the top freenode directly from that worker. The total global steal time is then O (log(p)). In contrast, shared-memory architecture such as Cilk can achieve constant time global stealing, at the expense of scalability. 3.2 Departure of workers Any worker may depart from the search once it has ﬁnished its assigned work and does not want to further do a global steal. This worker is deleted from the worker tree using the following departure algorithm which also maintains the perfectly weight balanced condition: 
delete_leaf() { start from Root; let d be the deepest node in T; delete d from T; adjust weights from d to Root; return d; } depart(n) { m = delete_leaf(); if (m != n) replace n by m; } 

is more efﬁcient than the usual balanced binary search tree by a constant factor since there is no rebalancing. Fault tolerance and arbitrary departure can also be built into this framework but it is beyond the scope of this paper. 

O (log(p)) time. It is interesting to note that since the worker tree is not ordered, it 

The departure algorithm works as the dual of worker insertion and is achieved in 

4 Analysis 
We now analyze the complexity of the greedy global steal algorithm for distributed parallel depth-ﬁrst search in our framework. A number of simplifying assumptions are made in the analysis below, however it is important to note that these assumptions simply give an upper bound to the time taken. Furthermore, they are not necessary for the algorithm to operate. 4.1 Analytical model We assume that there is an initialization phase which has allocated the original search problem to one worker. The time for this step is constant can be ignored. Although the number of workers can be dynamic, in order to obtain execution time bounds and speedups, we will consider a ﬁxed number of workers p at any one time. The remaining p − 1 workers obtain their work through global steals. During initialization, we assume that only global steals are occuring. The master is sequential so all work stealing requests are processed sequentially. Once a worker joins the search, it never leaves the system until the search is ﬁnished otherwise there would be less than p workers i.e. there is no deletion from the worker tree. We also assume that the workers are homogeneous at every step it is in one of the following states: (1) working on the search to expand a node in the search tree; (2) a global steal of a freenode from some other worker; (3) waiting for a phase to complete. The only useful work is in state (1) and other states constitute overhead. When some workers are stealing, all other workers are suspended (in state (3)). In practice, the algorithm allows other workers to continue their computation so it provides an upper bound on the time. We assume that Of course, this is not true in reality, but the execution time obtained as a result provide an upper bound for the reality. We assume that local operations on the search tree take 1 time unit. Communication between any workers or the master, being more costly, takes u time units. We assume that in order to make a valid speedup comparison, the number of nodes explored in the search tree is the same with 1 worker or with p workers. This would be valid in the worst case. Note that for ﬁrst solution search, it is possible for the the p-worker parallel search to explore less nodes and obtain superlinear speedup. Finally, we assume that for the global steal algorithm, the estimate of work is just the height of the stolen subproblem. We will use the following notation: H = the entire search tree h = no. of nodes in longest path in the tree T1 = time to solve H by one worker Tp = time to solve H by p workers p = no. of workers S p = speedup by p workers u = time units for message passing 4.2 Greedy global steal algorithm For the purpose of the analysis, the entire search process is said to be in one of the following two phases at any step in time: 

1. Stealing phase: In this phase, some k workers requests to do k global steals from the other p − k workers. When there is more than one global steal in a steal phase, this is modeled as the phase consisting of sequential global steals which suspend the rest of the workers. Let si be the duration of the ith steal phase. There are altogether ns number of such phases. So the total time overhead due to global steals is: tsteal = ∑ si 
i=1 ns 

(1) 

The initialization of the search process can be treated as a special case of stealing phase, where p − 1 workers are stealing from 1 worker with the original problem deﬁnition. 2. Working phase: In this phase, no stealing takes place, and all p workers are busy working. Working phase can happen between the stealing phases. From our assumption about equal work with 1 and p workers, the total work done in all work phases is T1 . In the working phases, there are p workers busy, so the time taken by working phases is bounded by T1 /p. In a steal phase, there are at most p − 1 workers stealing. Thus we have T1 + p × tsteal (2) Tp ≤ p The key to get a bound on Tp is to bound tsteal . We deﬁne the node stolen by a worker as the primary root of the worker. Every worker is working in a subtree rooted at its primary root. Let h pr (x) be the height of the primary root with respect to the lowest leaf node in H for worker x and hmax be the height of the highest primary root in H. pr When the search in H begins we have hmax = h The greedy global steal algorithm pr guarantees that a steal always returns the highest freenode in H. This ensures that h max pr behaves monotonically. Property 1. After every global steal, hmax strictly decreases by 1 or remains unchanged. pr As decreasing hmax takes time, we want to bound the time it takes for hmax to strictly pr pr decrease by 1. Let D(hmax ) denote the time during which hmax remains unchanged. pr pr Lemma 1. The total time delay before hmax decreases is D(hmax ) = O (p log p). pr pr Proof. For any stealing phase i, if there is only one thief with one steal, s i = O (u log p), because a global steal involves communication along the height of the worker tree, which is log p. Suppose worker a steals from worker b, h pr (a) = h pr (b) = h pr (b) − 1. So it takes up to p−1 such consecutive stealing phases to move h max down one level, the pr worst case being all p workers’ primary roots are at the same level initially. Therefore it takes D(h pr ) = O (up log p) in this case. For any stealing phase with k thieves and k steals, it can always be broken down to k number of one-steal phase. Thus the above bound on D(h pr ) still holds. We now give the following main result on the search time Tp for p workers. 

Theorem 1. Consider the execution of the greedy global steal algorithm for parallel depth-ﬁrst search on arbitrary search tree with work T1 and height h. The execution time on p workers is Tp = O (T1 /p + uhp log p). Proof. The number of times hmax decreases is bounded by h. Therefore tsteal = O (uhp log p) pr which combines with inequality (2) to give the result. The speedup is thus Sp = T1 p T1 =O . Tp T1 + uhp2 log p (3) 

From (3), we can see that the condition for near linear-speed is that uhp 2 log p T1 The space usage of any sequential depth-ﬁrst search algorithm is proportional to the height of the tree, or S(1) = O (h). In this framework, since every worker maintains a freenode stack which is at most h high, plus some constant space, the space usage for p processors S(p) = O (ph). So the space requirements in linear in the number of workers. Note it sufﬁces to store incremental constraints at each node in the freenode stack for O (1) space for freenodes. 4.3 Pragmatics Stealing an estimate of the largest work, i.e. the highest freenode heuristic, is a load balancing strategy to reduce the number of global steals. For search trees where this heuristic does work well, the execution time will be much better than the bound given in (1) since only one or a few global steal phases will be needed. The analysis ignores the fact that as workers are searching in their respective subtrees, their primary roots can also decrease. For example, when the worker has searched half of the subtree and crossed over to the other half, the primary root descends by one. Therefore it is possible that in practice, D(hmax ) can decrease faster than O (p log p), pr which means that Tp is faster than the bound in (1). The architecture is designed to avoid centralized management of the workers, so a master only knows about two workers. In practice, there will be a scalability tradeoff and the master could keep track of a large number of workers. The costs of distributed work stealing can be reduced by maintaining a buffer of freenodes at the master. This buffer is updated by the workers push their freenode up the worker tree. So the steal cost can be done in constant time when the buffer is not empty. While this does not reduce the worst case bound, it can signiﬁcantly reduce the average cost of a global steal. There is a special case which is worth mentioning in the analysis of the greedy global steal algorithm. If H is a completely balanced binary tree, and p is some power of 2, after the ﬁrst steal phase, every worker would have gotten a primary root at the same level (log p), and equal among of the work (T1 /p). Under our assumptions, all workers will be working till the end from this point, without further steals, because they have equal speed and work is synchronized. In this special case, Tp = O T1 + up log p . p (4) 

In a distributed setting, the communication costs are non-trivial. The communication factor u can dominate the steal overhead. It is important that the amount of work which can be stolen sufﬁciently exceed the steal cost O (u log p). This can be achieved by bounding the granularity of a stealing by a cut-off depth c. Once a worker has searched past the cut-off, it’s work cannot be stolen by other workers. Introducing a cut-off changes the algorithm slightly, workers can be in an additional end phase where only some workers are still relevant to the search and the remaining workers can be considered as having exited. Again to reduce the overhead of stealing, the cut-off should be chosen so that c u log(p). 

5 Experimental Results 
We present some preliminary experimental results on a prototype implementation of our search framework. The experiments were run on a 64-node cluster of PCs running Linux. Each node of the cluster consists of two 1.4GHz Intel PIII CPU’s with 1GB of memory. The nodes are connected by Myrinet as well as Gigabit Ethernet. As processor afﬁnity cannot be speciﬁed in this version of Linux, we have used only up to 61 nodes, which leaves one node for the master and two spare nodes. The cluster is non-dedicated and as such it is not the case that all nodes run at the same speed due to interference from other jobs. The purpose of the experiments is to examine how the time complexity scales with the number of nodes in a real setting where several assumptions may be violated. Our prototype implementation is meant to correspond more closely to the analysis and as such does not incorporate any optimizations to reduce global steals and has fairly high communication latencies. Several binary integer linear programming problems taken from the MIPLIB [2] and MP-TESTDATA [7] libraries are used in our experiments. The characteristics of these problems are shown in Table 1. We experiment with all solutions depth ﬁrst search and also best solution search. Two variant of branch and bound (B&B) are used for best solution search: the normal case where any new improving bound found by a worker is propagated through the worker tree and “noshare” where workers do not propagate bounds to other workers and only use bounds found within their own search. Noshare B&B trades off reducing communication cost with reduced pruning. Since branch and bound is expected to prune more of the tree for the same problems, the smaller problem sizes are used with backtrack search while the larger problems with branch and bound. A cut-off depth of 15 is used in backtrack search, and 20 in B&B search. 5.1 Speedup The speedup graphs for backtrack and B&B search are shown in Figures 5 and 6 respectively. The speedup with backtrack search is consistent with our analysis — near linear speedup is obtained for large enough problems. The relationship between problem size and speedup is illustrated in Fig. 5. A large problem (p0033) gives close to linear speedup even at 61 nodes while small problems (stein27 & weing1) depart from linearity at 24 nodes. 

Name Variables Constraints Search stein27 27 118 backtrack weing1 28 2 backtrack pet5 28 10 backtrack pb4 29 2 backtrack weish05 30 5 backtrack p0033 33 16 backtrack pb2 34 4 backtrack, b&b weish10 50 5 b&b weish14 60 5 b & b, no bnd share enigma 100 21 b&b Table 1. Problem sizes 
60 50 Speedup (T1/Tp) 40 30 20 10 0 perfect weish05 pet5 pb4 weing1 stein27 pb2 p0033 
60 50 Speedup (T1/Tp) 40 30 20 10 0 perfect weish14 weish14 noshare weish10 pb2 enigma 

12 4 

8 

16 

24 32 Number of Workers 

48 

61 

12 4 

8 

16 

24 32 Number of Workers 

48 

61 

Fig. 5. Speedup of backtrack search 

Fig. 6. Speedup of B&B search 

In B&B search, the pruning generally decreases the search space dramatically (e.g. the search tree size is reduced by more than 100 times in B&B for pb2). The relatively small search space means that there is insufﬁcient parallelism in the problem. This is clearly reﬂected in Fig. 6, which shows smaller speedups than backtrack search in Fig. 5, and the speedup lines curve down much earlier. Some speedup anomalies are observed in Fig. 6. Fig. 7 enlarges the region between 1 to 8 workers which illustrates superlinear speedup for weish14 and pb2 due to bound sharing. Enigma does not exhibit any speedup because the bounds and constraint satisﬁability prunes the problem very early even on 1 worker. Adding more workers only add to the steal overhead causing slowdown. The effect of bounds sharing to speedup is also depicted in Fig. 6 if we compare the curves of weish14 and weish14-noshare. It is clear that bounds sharing results in better speedup. 5.2 Work stealing Figures 8 and 9 shows the percentage of steals as a function of time with both axes normalized to 100% for weish05 (backtrack) and weish14 (B&B). The behavior of 

9 8 7 Speedup (T1/Tp) 6 5 4 3 2 1 1 

Normalized Number of Steals (Max=100) 

perfect weish14 pb2 

100 80 60 40 20 0 

4 Workers 8 Workers 16 Workers 24 Workers 32 Workers 48 Workers 61 Workers 

2 

4 Number of Workers 

8 

0 

20 40 60 80 Normalized Time (Start=0, End=100) 

100 

Fig. 7. Superlinear speedup 
100 Normalized Number of Steals (Max=100) 80 60 40 20 0 4 Workers 8 Workers 16 Workers 24 Workers 32 Workers 48 Workers 61 Workers 

Fig. 8. Work stealing over time for weish05 
250 200 Number of Steals 150 100 50 0 weish05 pet5 pb4 weing1 stein27 pb2 p0033 

0 

20 40 60 80 Normalized Time (Start=0, End=100) 

100 

12 4 

8 

16 

24 32 Number of Workers 

48 

61 

Fig. 9. Work stealing over time for weish14 

Fig. 10. No. of steals for backtrack search 

weish05 (backtrack) can be explained as follows: ﬁrst there is a sharp increase in steals as workers do global steals at the start of computation, followed by a horizontal plateau with no steals and then a second increase at the end when the amount of work per worker is decreasing there are more steals again. Where the number of workers is not a power of two, it can be seen that the second increase in steal rate occurs earlier as shown for the 24 and 48 worker curves which are shifted more towards the left. This is because when the number of workers is not a power of two, some workers receive less work than others and hence ﬁnish earlier which means they start stealing earlier. In B&B, Fig. 9, steals happen more frequently since the search may be terminated earlier by a broadcast bound. Thus instead of a horizontal plateau there seems to be a slow increase in the number of steals for weish14. Steals happen more frequently and earlier at the end since the B&B is more unbalanced. Fig. 10 and 11 show the number of global steals against the number of workers. Fig. 10 shows again that when the number of workers is not a power of two, the number of steals is increased. Bounds propagation is effective in reducing the size of the tree of the tree searched per global steal and hence causes more steals with more workers. This also mitigates the power of two effect for B&B. 

1800 1600 1400 Number of Steals 1200 1000 800 600 400 200 0 

weish14 weish14 noshare weish10 pb2 enigma 

25 Number of Workers 20 15 10 5 0 2.6 2.8 3 3.2 3.4 Percentage of Work Done 3.6 

12 4 8 

16 

24 32 Number of Workers 

48 

61 

Fig. 12. Load distribution for pb2 (backtrack) 

Fig. 11. No. of steals for B&B search 

If we compare the number of steals for pb2 in both ﬁgures, we can see that the number of steals in B&B search is smaller. This is because the search space in B&B is smaller and the search ﬁnishes much sooner than backtracking. The higher cut-off also contributes to the smaller number of steals. The slowdown of enigma in Fig. 6 is explained since the slope of the steal graph is large which means that adding more workers signiﬁcantly increases the number of steals. 
35 30 Number of Workers 
2 2.5 3 3.5 4 Percentage of Work Done 4.5 

6 Number of Workers 5 4 3 2 1 0 

25 20 15 10 5 0 2.6 2.8 3 3.2 Percentage of Work Done 3.4 3.6 

Fig. 13. Load distribution for pb2 (B&B) 

Fig. 14. Load distribution for weish14 (B&B) 

Fig. 12 and 13 show the load distribution as measured by the number of nodes in the search tree visited by each worker for the backtrack and B&B runs on pb2 with 32 workers. The load balance in B&B is in general not as good as backtrack search again because of the irregular search in the stolen subproblems due to bounds pruning. However, load balance in B&B can be good, as illustrated in Fig. 14 for weish14, in which all workers did equal search computation. 

6 Conclusion 
We have presented a distributed framework to implement depth-ﬁrst search with a general architecture based on constraint search trees with a simple to set of programming primitives for writing distributed search engines. In particular, it is easy to employ either a simple solver or make use of sophisticated constraint solvers based on consistency or 

integer linear programming. At the heart of our framework is an adaptive architecture which can deal with a dynamically changing set of workers coming/leaving. We show that analytically under ideal conditions that such an architecture is scalable and is able to achieve near linear speedup over a useful working range in the number of workers on problems with sufﬁcient parallelism. This result is validated by our experiments which show that for a range of optimization problems that good scaling and load balancing is achieved for up to 61 workers. Thus, we demonstrate empirically that distributed search scales well to a larger number of workers than recent work [11, 13] and we provide also theoretical guarantees. 

References 
1. J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer. ATLAS: An infrastructure for global computing. In The Proceedings of the Seventh ACM SIGOPS European Workshop on System Support for Worldwide Applications, 1996. 2. R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. MIPLIB 3.0. http://www.caam.rice.edu/˜bixby/miplib/miplib.html, Jan. 1996. 3. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. In Proceedings of the 35th Annual IEEE Conference on Foundations of Computer Science (FOCS’94), 1994. 4. R. Finkel and U. Manber. DIB - a distributed implementation of backtracking. ACM Transactions of Programming Languages and Systems, 9(2):235–256, April 1987. 5. A. Grama and V. Kumar. A survey of parallel search algorithms for discrete optimization problems. ORSA Journal of Computing, 7(4):365–385, 1995. 6. G. Gupta, E. Pontelli, K. A. M. Ali, M. Carlsson, and M. V. Hermenegildo. Parallel execution of prolog programs: a survey. ACM Transactions on Programming Languages and Systems, 23(4):472–602, 2001. 7. J. Heitk¨ tter. MP-TESTDATA: SAC-94 suite of 0/1-Multiple-Knapsack problem instances. o http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/index.html, Nov. 1999. 8. R. Karp and Y. Zhang. Randomized parallel algorithms for backtrack search and branch-andbound computation. Journal of the Association for Computing Machinery, 40(3):765–789, July 1993. 9. M. O. Neary, A. Phipps, S. Richman, and P. R. Cappello. Javelin 2.0: Java-based parallel computing on the internet. In Proceedings of 6th International Euro-Par Conference, pages 1231–1238. Springer, 2000. 10. C. Schulte. Comparing trailing and copying for constraint programming. In Proceedings of the International Conference on Logic Programming, ICLP, pages 275–289. The MIT Press, 1999. 11. C. Schulte. Parallel search made simple. In Proceedings of TRICS: Techniques foR Implementing Constraint programming Systems, a post-conference workshop of CP 2000, 2000. 12. R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Satin: Efﬁcient Parallel Divide-andConquer in Java. In Euro-Par 2000 Parallel Processing, number 1900 in Lecture Notes in Computer Science, pages 690–699. Springer, Aug. 2000. 13. K. Villaverde, E. Pontelli, H.-F. Guo, and G. Gupta. PALS: An or-parallel implementation of prolog on beowulf architectures. In Proceedings of 17th International Conference on Logic Programming, ICLP 2001, pages 27–42. Springer, 2001. 

