Animation and Simulation plays

1. Introduction
    Nowadays, Animation and Simulation plays an important role in Computer Graphic. In application such as, games, movies and special effects industry, we use realistic motion for animated characters by capturing the movement of real human and reuse it on the virtual 3D model. The result is very realistic and it was a popular technique in recent years. However, there is a limitation that, we cannot use the captured motion data to a different environment and condition. So, for example, developing a good animation or simulation game will be difficult with old techniques.

In this paper they introduce an approach called Behavior Planning which can automatically generate realistic motions for animated characters. The idea is simple; they first organize the motion clips into a Finite-State Machine (FSM) of behavior. Each state of FSM contains a collection of motions which represent a high-level behavior. With this behavior FSM and the search algorithm, we can find a user-specified goal in a pre-defined environment using global planning technique. This approach can consider many different possible paths in global sense before deciding on the final output animation by building a search tree.
2. Background
    In animation and simulation field, a number of methods such as Keyframing, Motion Capture Editing and Motion Interpolation have been proposed for generation motions for synthetic characters. However, these techniques cannot generate continuous streams of motion which are required in virtual environments. There are techniques like Behavior Scripting and Physically based methods which can generate arbitrarily long streams of motion. But these techniques also cost high computational costs.
    There are also several techniques for planning and searching to create meaningful movements for character animation. But compare to previous techniques, the advantages of this Behavior Planning are:
· Scalability and Efficiency: This approach can handle a large amount of data. The number of data in the FSM is relatively very small compared to motion graph approaches, so it can generate long animation sequences very efficiently.

· Memory Usage: This method requires only a small amount of data to generate realistic motions especially for games which are generally resource limited.

· Intuitive Structure: This method, FSM behavior is well-structured; so that the outputs can be easily understand by a non-programmer or artist.

· Generality: This method can be used with different characters or in different environments without having to re-design a new behavior.

· Optimality: This method is small enough to perform optimal planning.

· Anytime Algorithm: The planning algorithm can be interrupted any time for the best solution especially by Game Systems with limited CPU resource.
3. Behavior Planning
Finite-State Machine: The algorithm takes 3 input data, FSM behavior, information about environment, and start and end point of the character. Each state of behavior FSM contains a set of motion clips that represent a high-level behavior. Each directed edge represents a possible transition between two behaviors.

This is a simple FSM with which each state contains a set of motion clips for a particular behavior. It is better to have the starting and ending of each clip to be similar. Otherwise, interpolation of clips may be needed. In practice, it is better to use motion clips which are relatively shorter in time compared to the length of the pre-calculated solutions.

This figure shows a more complicated human-like character with 7 type of jogging behavior. In addition to "jump" and "crawl", "stop-and-wait" behavior allows the animated character to stop and stand for a while during a jog. Between each motion clip, extra frames are also used for blending for the smoothness of the output. This FSM can also be used in skateboarder and horse simulation by a little modification of behaviors.

Environment Abstraction: This algorithm can handle both static and dynamic environment. The input data is a finite space including the detail information of obstacles, free space, slopes, hills, archway to crawl under it, and small gaps to jump over it.

Behavior Planner: Using the following pseudo code algorithm, the behavior planner can compute and generate the best path and sequence of behavior to reach the goal position from several paths within the tree structure. Two data structure used in this algorithm are (1) a tree with nodes stored in FSM that expands continuously during the search; and (2) a priority queue of FSM ordered by cost. The motion clips are stored in each node in the tree. The user weights are assigned to each action, so that user can easily control the behavior of the animation of the character. Using weight, user can specify the priority of action motion preferences. This algorithm can also detect the condition of no solution by marking the visited path, so that the algorithm can stop in finite time.

Motion Generation and Blending: When the behavior planner finish computing the path to animate, a sequence of behavior is returned to generate an actual motion for the character. There may be gaps between each action clips. In order to make it smooth, linear interpolation is used.
4. Results
The above figures show a search tree generated by the behavior planner. The green point indicates the starting point of the character and the red point indicates the goal position of the character. The small dots are the paths generated by the search tree. There is a line crossing through the way between start and end point is for the character to crawls under or jumps over it. The colors of the dots indicate the cost of each node and the color ranging from blue to red. The search time is inversely proportional to the quality of the output motion.

In the following 3 pictures, three characters are simulated in a dynamic environment where the object is fall down and block the way to last 2 characters to make them jumps over it only after the first character passed through that location. However, the planning algorithm can calculate the correct result in less than one second.
    Similarly, they used this approach to test with (1) different terrain for character behavior preference, (2) skateboarder for "stop and wait" technique and (3) horse simulation for avoiding fast moving obstacles. The results can be calculated in a relatively very small amount of time.
5. Discussion
    This paper provides a method for behavior planning to automate the realistic motions for animated characters. This algorithm can perform a global search from the tree data structure from the starting point to the final goal position. It can also report in a finite time if there is no possible solution and will not be stuck in the infinite loop.
    The behavior planning approach mainly depends on the behavior FSM and motion data clips. The designing of FSM is relatively very simple and, once it is developed, we can be reused it in different environment and different character. However, we still need to add individual clips of motions do the segmentation of data and identify the transition labels.
    Another feature of this approach is that it can work in dynamic environment. Because of this advantage, we can use the behavior planning to interactive and dynamic changing environment like game development especially in planning bots and in some interactive movie production environment. Because the designing if FSM is simple and easy, the designer can implement this approach efficiently to most of the fields they like. Although this approach's main purpose is to plan the behavior of character animation, it can also generate motions for crowds as they tested with 100 human characters.
    However, no system is perfect and every system has its own weak points. In this approach, the motions in FSM states can be used only from a predefined set of data. For example, we can only apply "jog left" behavior state in simulation; instead we should be able to control the degree of turning angle. Similarly, we should be able to plan the jumping distance for "jump forward" behavior, so that the character can jump a bigger gap when necessary and able to find a better solution.

